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RESUMO

Essencial para o progresso tecnolégico e econdmico, a energia elétrica demanda solucdes e
estratégias bem fundamentadas que conduzam a um gerenciamento eficiente e sustentavel.
Porém, unidades consumidoras pré-existentes, que nao possuem tais recursos tecnolégicos,
necessitam de alternativas graduais e ndo abruptas para otimizar o uso de energia em suas
instalacdes, aproveitando ao maximo os meios existentes. Nesse sentido, o retrofit surge como
uma solucgdo para atualizagdo dessas infraestruturas. Além disso, modelos sist€émicos podem
ser utilizados nessas circunstincias para padronizar e garantir a replicacdo de solugdes tecno-
l6gicas em diferentes contextos. No entanto, o estado da arte atual evidencia uma caréncia em
estratégias sistematizadas de retrofit para aprimorar a gestao energética, levando em conta as
especificidades das instalagdes j4 existentes, principalmente no setor elétrico brasileiro. Para
preencher esta lacuna, esta tese de doutorado apresenta estratégias de retrofit inovadoras para
modernizacao de instalacoes elétricas legadas regidas pelas regulamentacdes da Agéncia Na-
cional de Energia Elétrica (ANEEL) no Brasil. Com esse intuito, foram propostas arquiteturas
sistémicas inéditas, inspiradas na adapta¢do do metamodelo SmartL.VGrid, visando promover
e otimizar a gestdo energética com recursos tecnologicos distribuidos e capacidades preditivas
avancadas. As arquiteturas contemplam especificacdes para o desenvolvimento de dispositi-
vos com interfaces fisicas e l6gicas que permitem a coleta de dados em tempo real através
de redes de sensores sem fio, aproveitando ao méximo os recursos disponiveis da instalacao.
Associadas e integradas as arquiteturas sistémicas desta pesquisa, apresentamos solugdes para a
gestdo de dados energéticos de unidades consumidoras legadas e de seus respectivos circuitos,
incluindo visualizacdo, processamento e armazenamento de informagdes em sistemas locais
e na nuvem. Essas medidas conferem capacidade computacional descentralizada as unidades
consumidoras pré-existentes. A pesquisa também se dedica a elaboracdo de bases de dados para
sistemas energéticos pré-existentes, que carecem de informacgdes disponiveis na literatura. Os
dados obtidos a partir da implementagdo da proposta foram pré-processados e utilizados para a
previsdao de demanda energética dos proximos 15 minutos através de algoritmos de aprendizado
de maquina difundidos no estado da arte. Essa previsdo é fundamental para evitar ultrapassagens
de demanda contratada, conforme estabelecido pelas normativas da ANEEL. Adicionalmente,
com o objetivo de beneficiar instalagcdes com recursos computacionais limitados, este trabalho
almeja estratégias para realizar previsdes de séries temporais de demanda energética diretamente
nos dispositivos sensores de retrofit, aplicando os principios do TinyML. Esta tese € estruturada
através da agregacao de artigos cientificos, cada um abordando arquiteturas sist€émicas e aspectos
especificos para modernizacdo da gestao energética em unidades consumidoras pré-existentes do

setor elétrico brasileiro.

Palavras-chave: Eficiéncia Energética. Sustentabilidade. Retrofit. SmartL.VGrid. Monitoramento

Energético. Previsdo de Demanda Energética. IoT, AloT e TinyML.



ABSTRACT

Essential for technological and economic progress, electrical energy demands well-founded
solutions and strategies that lead to efficient and sustainable management. However, pre-existing
consumer units, which do not have such technological resources, need gradual and non-abrupt
alternatives to optimize the use of energy in their facilities, making the most of existing means. In
this sense, retrofit appears as a solution for updating these infrastructures. Furthermore, systemic
models can be used in these circumstances to standardize and guarantee the replication of
technological solutions in different contexts. However, the current state of the art highlights
a lack of systematic retrofit strategies to improve energy management, taking into account
the specificities of existing installations, mainly in the Brazilian electricity sector. To fill this
gap, this doctoral thesis presents innovative retrofit strategies for modernizing legacy electrical
installations governed by the regulations of the National Electric Energy Agency (ANEEL)
in Brazil. To this end, new systemic architectures were proposed, inspired by the adaptation
of the SmartL.VGrid metamodel, aiming to promote and optimize energy management with
distributed technological resources and advanced predictive capabilities. The architectures
include specifications for the development of devices with physical and logical interfaces that
allow real-time data collection through wireless sensor networks, making the most of the
installation’s available resources. Associated and integrated with the systemic architectures
of this research, we present solutions for managing energy data from legacy consumer units
and their respective circuits, including visualization, processing and storage of information
in local systems and the cloud. These measures provide decentralized computing capacity to
pre-existing consumer units. The research is also dedicated to creating databases for pre-existing
energy systems, which lack information available in the literature. The data obtained from the
implementation of the proposal were pre-processed and used to predict energy demand for the
next 15 minutes using state-of-the-art machine learning algorithms. This forecast is essential to
avoid exceeding contracted demand, as established by ANEEL regulations. Additionally, with
the aim of benefiting installations with limited computing resources, this work aims at strategies
to perform energy demand time series forecasts directly on retrofit sensor devices, applying
TinyML principles. This thesis is structured through the aggregation of scientific articles, each
one addressing systemic architectures and specific aspects of energy management modernization

in pre-existing consumer units in the Brazilian electricity sector.

Keywords: Energy Efficiency. Sustainability. Retrofit. SmartLVGrid. Energy Monitoring. Energy
Demand Forecasting. [oT, AloT, and TinyML.
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1 INTRODUCAO

A preparacdo desta tese segue os principios estabelecidos na resolu¢do n° 3359 do
regimento do Programa de P6s-Graduacdo em Engenharia Elétrica (PPGEE) da Universidade
Federal do Para (UFPA). De acordo com o § 2° do artigo 54 deste regulamento, a tese pode ser

apresentada tanto no formato tradicional quanto por meio da agregacdo de artigos cientificos.

Segundo o Artigo 54 - "Para o Doutorado, a Tese pode ser desenvolvida pelo método

tradicional ou por agregacao de artigos cientificos".

De acordo com o § 2°, a elaboragdo da tese por agregacdo de artigos cientificos deve in-
cluir pelo menos trés artigos completos publicados em revista especializada com comité editorial,
cumprindo os indices minimos de aceitacdo estabelecidos pelo PPGEE. Alternativamente, um
capitulo de livro, livro inteiro ou patente também podem ser aceitos. Todos os documentos devem
ser relevantes para o tema da tese e estar em conformidade com os critérios do Qualis da CAPES.

O PPGEE definira em resolugdo especifica os indices minimos de aceitacdo do periddico.

Segue abaixo a lista cronoldgica de trabalhos aceitos e publicados até o presente momento
para a defesa de qualificacao do doutorado, estruturada no formato de compilagdo de artigos

cientificos:

1. Energies - MDPI (ISSN: 1996-1073). Qualis CAPES A2 em Engenharias IV (2017-2020),
JCR: 3.2, CiteScore: 5.5. Titulo: A Retrofit Strategy for Real-Time Monitoring of Building
Electrical Circuits Based on the SmartL.VGrid Metamodel.

2. Sustainability - MDPI (ISSN: 2071-1050). Qualis CAPES A2 em Engenharias IV (2017-
2020), JCR: 3.9, CiteScore: 5.8. Titulo: A Demand Forecasting Strategy Based on a
Retrofit Architecture for Remote Monitoring of Legacy Building Circuits.

Ainda, obtivemos a aprova¢do de um artigo associado ao tema em conferéncia internaci-

onal:

* 15th IEEE/IAS International Conference on Industry Applications - INDUSCON 2023.
Titulo: A Bayesian Optimization Approach of Ensemble and Decision Tree Learning

Applied to Industrial Energy Consumption Prediction.

Esta publicacido estard disponivel no Anexo A deste documento.

Nas se¢des subsequentes, avancaremos com as discussdes pertinentes a este capitulo
introdutorio, abordando a contextualizacdo e principais desafios relacionados ao tema de pesquisa,
problemadticas e motivagdes, objetivos, trabalhos relacionados, as lacunas da literatura quanto ao

ambito desta pesquisa e a organizacao deste documento de tese.
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1.1 CONTEXTUALIZACAO

O advento da era digital no século XXI trouxe avancos tecnoldgicos significativos, que
se refletem em diversos setores da sociedade. Uma porcdo desses avangos estd centrada na
eficiéncia e na otimizacao dos recursos essenciais para as atividades didrias, como a energia
elétrica e a dgua. Para isso, os paradigmas digitais deste século, como Internet das Coisas
(I0T), Smart Buildings, Smart Grids e Smart Cities, viabilizam a transformacao tecnoldgica
nos setores residenciais, prediais, industriais e metropolitanos, garantindo o gerenciamento e
controle eficiente desses recursos (GOMES et al., 2019).

Apesar da transformacao digital oriunda dos preceitos desses paradigmas, muitos sis-
temas pré-existentes tornam-se obsoletos frente as novas tecnologias emergentes. Entretanto,
eles ainda podem desempenhar papéis fundamentais nas préticas cotidianas. Estes sistemas sao
denominados sistemas legados (CAO; IANSITI, 2022; NTAFALIAS et al., 2022). Mesmo ainda
sendo tteis, lampadas, tomadas, equipamentos eletrodomésticos e outros dispositivos eletroele-
tronicos, quando obsoletos, passam a compor parte dos sistemas e infraestruturas legados nos

setores aos quais pertencem.

O setor elétrico, que ainda mantém grande parte de suas operagdes manuais e equipa-
mentos desde sua concepcao, consiste em muitos elementos e infraestruturas pré-existentes. No
entanto, mesmo sendo composto em grande parte por recursos € atividades legados, a presenca
deste setor € um forte indicador de desenvolvimento socioeconémico. Como exemplo disso, os
trabalhos (JAISWAL et al., 2022) e (SAID; BHATTT; HUNJRA, 2022) destacam os impactos
do setor elétrico no progresso e desenvolvimento sustentdvel e socioecondmico. Nas analises
apresentadas, os autores adotam a demanda energética como fator correlato ao desenvolvimento
socioecondmico. Portanto, destaca-se a relevancia de gerir adequadamente a demanda energética
das unidades consumidoras com o objetivo de otimizar e implementar medidas que reforcem e

otimizem o uso dos insumos energéticos.

A concepcao da Internet das Coisas (IoT), proporciona o monitoramento remoto de
ativos e insumos essenciais através de solugdes digitais avancadas, as quais integram controle,
automacao e comunicacdo em uma rede de dados. Estas solucdes, quando aplicadas ao setor
elétrico, permitem gerenciar a demanda energética e outras grandezas elétricas em tempo real e de
forma remota, eliminando ou reduzindo a necessidade de intervencao humana (TAMILARASU
etal., 2021; AOUN et al., 2021). Tal abordagem minimiza potenciais erros de medicdo e assegura

a coleta de dados em um tempo pré-determinado.

Como um resultado da fusdo entre solu¢des de controle e monitoramento interconectadas,
concebidas a partir dos conceitos do 0T, e a aplicacdo de técnicas avangadas de inteligéncia
artificial, surge o conceito de Inteligéncia Artificial das Coisas (AloT) (GAO et al., 2023).
Através desse paradigma, os dados recolhidos por redes de sensores sem fio (WSN) ou outras

solugdes digitais IoT alimentam bancos de dados, sdo posteriormente utilizados para aprendizado
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de mdquina, executando tarefas como regressao, classificacdo e agrupamento. A partir disso, é
possivel viabilizar ndo apenas a visualizacao e tratamento de dados de sensores com técnicas de
Business Intelligence, mas também disponibilizar recursos para andlises preditivas, aprimorando

significativamente a qualidade das decisdes tomadas.

A relevancia das solucdes de IoT e AloT no dmbito energético € incontestdvel, especial-
mente devido ao crescimento continuo na demanda por energia e na necessidade em gerenciar
de forma eficiente outras varidveis elétricas. Essas tecnologias unificadas tém o potencial para
transformar profundamente os setores elétricos residenciais, prediais, industriais e urbanos,
impulsionando-os rumo a uma maior sustentabilidade, eficiéncia e resiliéncia. Mediante a im-
plementacdo de estratégias sistémicas cuidadosamente delineadas, ajustadas as necessidades e
realidades especificas das unidades consumidoras, € possivel integrar solugdes digitais proveni-
entes desses paradigmas em cendrios pré-existentes, mesmo naqueles com escassez de recursos
tecnoldgicos. Tal estratégia viabiliza uma alternativa concreta para a convergéncia digital no

setor elétrico pré-existente.

Nesse cendrio, nas se¢des subsequentes, abordaremos alguns desafios e oportunidades
associadas a modernizagdo de sistemas elétricos legados e a implementacdo de solugdes inteli-
gentes neste setor, sobretudo nos diversos pontos de energia distribuidos nas instala¢des elétricas

de baixa tensao.

1.2 DESAFIOS NA MODERNIZACAO DO SETOR ELETRICO

Na busca pela modernizacdo de sistemas pré-existentes, uma pratica comum envolve
a substitui¢do total ou da maioria dos componentes legados para acelerar os processos de
convergéncia tecnoldgica. Contudo, essa estratégia pode levar a custos elevados e ao desperdicio
de recursos atuais. No trabalho (MHLANGA; DENHERE; MOLOI, 2022), por exemplo, os
autores propdem uma alternativa para viabilizar a educagdo na Africa durante a pandemia da
COVID-19 através da digitalizacao das metodologias educacionais. Eles salientam as dificuldades
da implementagdo rapida e abrupta desta convergéncia digital em paises emergentes. Portanto,
para que essas nagdes possam implantar novos recursos tecnoldgicos, torna-se essencial adotar
estratégias que permitam uma convergéncia digital gradual e menos disruptiva, maximizando a

utilizacdo de recursos pré-existentes.

Nesse contexto, surge a oportunidade de aplicar estratégias de retrofit para modernizar
e personalizar sistemas ja estabelecidos, beneficiando-se dos recursos existentes do legado.
Esta abordagem € particularmente ttil para atualizar infraestruturas e sistemas que, apesar de
desempenharem fungdes essenciais, carecem de interfaces ou capacidades de interoperabilidade
com sistemas mais modernos (NAIR; VERDE; OLOFSSON, 2022; ALABID; BENNADII,;
SEDDIKI, 2022; SAFFARI; BEAGON, 2022).

Para melhor ilustrar essa abordagem, no trabalho (FERNANDES et al., 2022), os autores
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apresentaram uma proposta de arquitetura para a transformacao digital de sistemas de iluminagdo
indoor legados. A fim de evitar a substituicao completa dos equipamentos ja em uso, optou-se
por modernizar os drivers de iluminacao LED antigos, que ndo possuiam recursos para controle
ou monitoramento remoto. Estes foram substituidos por dispositivos de hardware atualizados,
capazes de monitorar tanto o consumo de energia quanto o status operacional da lumindria. Além
disso, esses novos dispositivos permitem acionar a lampada de forma remota e controlar o fluxo
luminoso por meio de redes sem fio. A Figura 1 demonstra o processo de retrofit realizado para
modernizacdo das lumindrias de LED, onde o ACU-LUM foi o hardware moderno que substituiu
o driver de LED legado.
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Figura 1. Retrofit para modernizacao de ilumina¢do LED (FERNANDES et al., 2022).

Abordagens como esta tornam vidvel a implementacdo de solugdes digitais de [oT e
AloT em ambientes legados (YIGITCANLAR et al., 2020). Contudo, a complexidade dessa
implementacao pode oscilar, dependendo das particularidades de cada sistema ou infraestrutura.
A escolha da estratégia apropriada deve considerar os recursos disponiveis e as necessidades
especificas de cada setor. Como exemplo, existem estratégias que habilitam a gestao energética
por meio do monitoramento remoto de circuitos elétricos, sem o uso de servicos sofisticados
de processamento, comunica¢do e armazenamento. Este cendrio é comum em comunidades
indigenas, rurais e isoladas, conforme apresentado nos trabalhos (ALI et al., 2023a) e (KAL-
PANA et al., 2023). Em contraste, outras comunidades podem requerer estratégias sofisticadas
e funcionalidades distintas, incluindo o monitoramento individual de cargas especificas em
uma instalagdo, ressaltando a necessidade de abordagens personalizadas para a digitalizacao de

grandezas elétricas e outros parametros desejados.

Diante dessa situacao, surge a necessidade de estabelecer arquiteturas sistematizadas
ancoradas em protocolos e normas bem definidos, com o objetivo de padronizar a execugdo de
estratégias de retrofit para serem aplicadas em processos de modernizagdo e atualizagdo para
diversos casos e sistemas. Entretanto, hd uma lacuna na literatura no que se refere a arquiteturas
sistematizadas para tal propdsito, o que dificulta a implementacdo uniforme de estratégias

voltadas a transformacao digital de sistemas legados.

Nesse contexto, destaca-se 0 metamodelo SmartL.VGrid, uma proposta inovadora para
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viabilizar a transi¢@o digital dos sistemas elétricos em dire¢do ao paradigma das Smart Grids
(GOMES et al., 2019). Este metamodelo consiste em primitivas operacionais e pilhas de protoco-
los bem estabelecidos para sistematizacao de estratégias de retrofit em sistemas de distribuicao
de energia de baixa tensdo. Outros estudos ja propuseram adaptacdes neste metamodelo em
processos de modernizacdo e convergéncia tecnoldgica de edificios legados para o conceito de
Smart Buildings, possibilitando que os protocolos e primitivas do SmartL.VGrid pudessem ser
utilizados em outros casos e sistemas além dos sistemas de distribui¢cdo de energia de baixa
tensdao (FERNANDES et al., 2022).

No entanto, até o presente momento, a literatura ndo apresentou nenhuma proposta de
arquitetura sistémica capaz de promover a implanta¢do de recursos para a gestdo energética,
aplicando tecnologias de comunica¢do em redes sem fio distribuidas para monitoramento de
infraestruturas ja estabelecidas, mas ainda necessarias. Esta lacuna criou uma oportunidade de
avancar o estado da arte da gestdo energética de instalacdes legadas, incorporando tecnologias

com capacidades preditivas e de tempo real.

Por meio da estruturacdo proporcionada por arquiteturas bem definidas, exemplificadas
pelo metamodelo SmartL.VGrid, torna-se viavel implementar solugdes de retrofit sistematizadas
baseadas em [oT e AloT em infraestruturas j4 existentes. Dessa forma, oportuniza-se a aplicagdao
e replicacdo dessas solucdes em diferentes contextos e sistemas. Tais solugdes potencializam a
melhoria dos processos de gestdo energética em diversos setores legados, otimizando a utilizagdo
dos recursos ja disponiveis de maneira mais eficiente e sustentavel. Portanto, este avanco
representa uma forma estratégica inédita de modernizar as infraestruturas existentes sem a

necessidade de grandes intervengdes ou investimentos.

1.3 DESAFIOS NA ANALISE DE DADOS DOS SISTEMAS ELETRICOS LEGADOS

Considerando o contexto socioecondomico dos setores legados, inclusive o energético,
a implementacdo de métodos estatisticos e solucdes de aprendizado de maquina em infraes-
truturas ja existentes, pode ser limitada devido aos elevados custos associados a instalagao
de sistemas computacionais sofisticados. Além disso, equipamentos e unidades consumidoras
pré-existentes podem nao dispor de recursos para aquisi¢ao de dados, ou mesmo bases de dados
pré-estabelecidas, para elaboracdo de estudos aprofundados que corroborem com processos de

auditoria energética.

Nesse sentido, a implementacdo de solucdes em nuvem para andlise e processamento de
dados em sistemas elétricos legados oferece diversos beneficios, contribuindo para uma gestao
mais eficaz, flexivel e descentralizada do consumo de energia. As solu¢des em nuvem fornecem
um alto grau de escalabilidade, permitindo que sistemas de aquisicao de dados se adaptem
facilmente a expansdo da infraestrutura ou ao aumento da demanda energética. Além disso, elas
oferecem acesso a recursos computacionais avangados, que podem corroborar com oportunidades

para a eficiéncia energética e favorecer a integracdo com outras tecnologias emergentes, como
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inteligéncia artificial e IoT, para aprimorar ainda mais o monitoramento e a gestao de energia
(LONG et al., 2022).

No entanto, embora a literatura apresente trabalhos voltados ao setor elétrico, que
propdem o uso de aplicagcdes especificas de inteligéncia artificial baseadas em nuvem como
alternativa, como em Bird et al. (2022), essa alternativa pode ndo ser economicamente viavel
para todas as comunidades, incluindo as pré-existentes. Os custos associados ao uso intensivo
e constante de servicos em nuvem, principalmente na aquisi¢do cumulativa de parametros
de ativos ou de unidades consumidoras, podem tornar a manutencdo de solugdes inteligentes
financeiramente onerosa em determinados contextos. Para elucidar melhor a necessidade de
recursos computacionais na implementagdo de sistemas inteligentes, e contextualizar os recursos
de hardware necessdrios para aplicagdes especificas de inteligéncia artificial e anélise de dados,

apresentamos a Figura 2.

Cloud ML
Algorithm: Deep neural network on the cloud
Hardware: TPU, FPGA, GPU, CPU

Edge ML

Algorithm: Optimized algorithms and convolution neural network-
e light-weight

f Hardware: SoC (with NPU/NSP accelerators)
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'EE Algorithm: Convolution neural network-micro
Hardware: MCU with / with out hardware accelerators
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Figura 2. Recursos de hardware e computacionais para implementagao de solucdes inteligentes
(RAY, 2022).

Conforme ilustrado, a implementacdo de solugdes inteligentes baseadas em nuvem
(Cloud) exige recursos avangados de hardware, geralmente direcionados a execugdo de algorit-
mos de aprendizado profundo. Este hardware normalmente inclui unidades de processamento
de tensores (TPUs), arranjos de portas programaveis em campo (FPGAs), unidades de proces-
samento grafico (GPUs) e unidades centrais de processamento (CPUs). Todos esses elementos
possuem alta capacidade computacional em termos de processamento, memaoria € consumo

energético, o que os torna dispositivos mais custosos de serem acessados.

Por outro lado, em aplicagdes inteligentes na borda (Edge), os algoritmos de aprendizado

de maquina (ML) requerem processos de otimizacdo para que possam ser embarcados em
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dispositivos com menor capacidade computacional, como smartphones, dispositivos méveis e
computadores modulares. Estes ultimos contam com unidades de processamento conhecidas
como System-on-a-Chip (SoC), que condensam todos os periféricos necessarios, incluindo
memoria e CPU, em um dnico semicondutor (CHANDRASEKARAN et al., 2022). Dado que
esses dispositivos sdo geralmente alimentados por baterias, sua capacidade de processamento é

intencionalmente reduzida para aumentar a autonomia.

Geralmente, aplicagdes robustas de modelos de inteligéncia artificial, requerem um
volume substancial de dados. Neste contexto, as solucdes de AloT oferecem capacidade de
comunicacdo em redes de dados para o envio de informagdes pertinentes, além de recursos
extras para andlises estatisticas e preditivas desses dados, incluindo a predi¢ado e a previsao de
grandezas elétricas. Dependendo dos recursos disponiveis para andlise de parametros energéticos,
estas solu¢des podem ser aplicadas tanto em ambientes de nuvem, quanto na borda no contexto
das instalacdes legadas, o que agrega valor em processos de otimizagdo energética dentro do

contexto dessas instalacdes.

No entanto, dependendo do tamanho da amostra desejada e do volume de informagdes,
os dispositivos de sensoriamento podem consumir uma quantidade consideravel de energia, e
largura de banda da rede na transmissdo dos dados adquiridos (SCHIZAS et al., 2022). E impor-
tante enfatizar que os recursos de infraestrutura de redes de comunicac¢io podem ser limitados
em sistemas pré-existentes e, para promover processos de comunicagao nestas circunstancias,
devemos viabilizar a implanta¢do das melhores tipologias de rede para cada caso. Ademais, o en-
vio massivo de dados para um servidor local ou em nuvem atribui uma capacidade centralizadora

aos dispositivos que processam e recebem esses dados.

Em conformidade com os principios dos sistemas distribuidos, nos quais a capacidade
computacional € partilhada para minimizar dependéncias e problemas com sistemas centralizados,
seria proveitoso que os algoritmos de aprendizado operassem diretamente nos sensores no
contexto de AloT (HOU et al., 2023). Isso viabilizaria predi¢des e classificagdes em tempo real
de maneira distribuida nos setores energéticos, considerando que esses dispositivos, equipados
com cameras, elementos Opticos, unidades de medi¢do inercial (IMUs), microfones e outros
sensores ambientais, fisicos e quimicos, podem estar dispersos em um determinado ambiente.
Além disso, otimizaria o custo com recursos adicionais para processamento € comunicacdo em

redes de dados, possibilitando inferéncias de previsdes em tempo real.

Conforme exposto na Figura 2, a tendéncia para estes cendrios € a ado¢do do para-
digma de TinyML (7iny Machine Learning), voltado para solucdes de inteligéncia artificial
operaveis em plataformas microcontroladas (MCUS) de baixo custo, com capacidade reduzida
de processamento e armazenamento e associada com elementos sensores (RAY, 2022). Este
campo de atuagdo € recente e atualmente conta com fortes pesquisas para aplicagdes de redes
neurais convolucionais para classificacdo de imagens em borda a partir de modelos extremamente

compactos e precisos, como por exemplo, a arquitetura BacalhauNet descrita em (ROSA et al.,
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2022).

E relevante destacar que a implementacio de modelos de aprendizado em microcontrola-
dores requer processos ainda mais rigorosos para otimizar € compactar os modelos, tais como a
quantizacdo e a destilacdo de conhecimento. A quantizac¢do busca simplificar os pesos e pardme-
tros das redes neurais, enquanto a destilacdo de conhecimento visa reduzir a complexidade do
modelo, incluindo a remocdo de conexdes neurais internas, tudo isso com o intuito de diminuir
o custo computacional (GARBAY et al., 2022). Embora essas estratégias sejam eficazes para
implementar modelos inteligentes em plataformas microcontroladas, elas podem resultar em
uma perda de precis@o e acurécia, o que agrega ainda mais desafios para estudos neste campo de

pesquisa.

Por outro lado, no que tange aplicagdes de TinyML no setor elétrico para predi¢des
de demanda e consumo energético por meio de redes de sensores, a literatura carece de tra-
balhos relacionados, incluindo pesquisas voltadas para previsdes de séries temporais. Até o
presente momento, o trabalho mais recente encontrado explora arquiteturas de redes neurais
para aplicar TinyML para previsdo de energia solar (GRUOSSO; GAJANI, 2022). No entanto,
ainda ndo foram obtidos trabalhos da literatura neste &mbito aplicdveis diretamente ao gerencia-
mento energético de instalacdes elétricas, principalmente considerando a realidade de unidades

consumidoras inseridas no setor elétrico brasileiro.

1.4 DEFINICAO DO PROBLEMA E MOTIVACOES

No setor energético, os sistemas de monitoramento t€m o potencial de automatizar
processos de auditoria energética, permitindo o acompanhamento remoto de ativos e unidades
consumidoras. Utilizando os dados desses sistemas, modelos de aprendizado de maquina podem
prever o consumo e a demanda energética, o que otimiza o planejamento e a alocagdo de recursos
energéticos. Entretanto, mesmo com a disponibilidade de solu¢des tecnoldgicas avancadas
na literatura para estas finalidades, o principal desafio abordado neste trabalho é a falta de
propostas que possibilitem a implementacdo dessas tecnologias em instalacdes ja existentes,
particularmente aquelas com limitagdes de recursos para monitoramento energético remoto e

processamento computacional.

No Brasil, unidades consumidoras que recebem alimentacdo em média e alta tensdo
sdo tarifadas de forma bindmica, por meio do consumo e de uma demanda energética pré-
contratada com uma distribuidora local (RODRIGUES; MORAES; BEREJUCK, 2021). A
demanda € avaliada a cada 15 minutos e, se ultrapassada, pode resultar em multas, conforme a
Resolucdo Normativa ANEEL n° 1000/2021 (ANEEL, 2021a). Nesse cendrio, a partir dos dados
de monitoramento coletados de unidades consumidoras e seus circuitos, uma ferramenta de
previsdo da demanda energética para os proximos 15 minutos poderia ajudar a prever possiveis
excessos, permitindo agdes preventivas para reduzir custos em instalagdes residenciais, industriais

e prediais pré-existentes.
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Conforme mencionado anteriormente na Se¢do 1.2, a literatura carece de alternativas para
monitoramento remoto dos sistemas elétricos brasileiros pré-existentes, que corroborem com
processos de planejamento energético. Nesses cendrios, comentamos que estratégias de retrofit
poderiam ser utilizadas para automatizar os sistemas pré-existentes para inserir recursos de
controle e monitoramento remoto através de redes de comunicacgao especificas, preservando-os
ao maximo. E para que estas estratégias fossem replicaveis para outros casos e sistemas, a padro-
nizacao das técnicas utilizadas deveria ser sistematizada por meio de protocolos estabelecidos
em um modelo arquitetural de referéncia, que possuisse a estratégia de retrofit como parte de
sua concepcao. A partir disso, poderiamos tornar infraestruturas legadas observaveis e garantir a
melhoria de processos energéticos no cendrio brasileiro com solugdes tecnoldgicas, almejando

sustentabilidade e eficiéncia energética.

O metamodelo SmartLVGrid, apesar de possuir caracteristicas semelhantes, nao con-
templa em sua concepgao estratégias para viabilizar a gestdo energética, de forma analitica ou
preditiva. Apesar de seus conceitos e premissas serem passivos de implementacdo em outros
setores energéticos, que nao os sistemas de distribuicdo de energia, nem este metamodelo ou
alguma arquitetura sist€mica no estado da arte e da técnica foram encontrados com o objetivo de
promover a atualizacdo tecnoldgica de sistemas energéticos legados. Ainda, ndao foram expostos
casos similares, aplicdveis para instalagdes prediais ou fabris existentes no Brasil ou em outras

localidades tecnologicamente emergentes.

Nessa perspectiva, além dos recursos implementados para andlise de uma instalagdo
como um todo, o monitoramento e a previsao de demanda energética em cada circuito t€ém o
potencial de aprimorar significativamente a gestdo energética. Ao integrar modulos de retrofit
para o monitoramento de cada circuito em uma instalag@o, € possivel ndo apenas analisar e prever
a demanda nos préximos 15 minutos, como rege a regulamentagao brasileira, mas também incor-
porar capacidade analitica distribuida nos processos de auditoria. Isso eleva a transparéncia nas
instalacdes prediais e industriais legadas, tornando-as completamente observaveis e promovendo
um maior controle sobre o consumo energético, além de insights para atua¢des mais acertivas e

diretas nas cargas mais criticas em uma unidade consumidora.

A partir disso, com o uso de redes de comunicacao especificas dentro de um cendrio
existente, os dados coletados podem ser disponibilizados em aplicagdes em nuvem com recursos
para visualizacdo e armazenamento de dados. Dessa forma, contribuimos para tornar os processos
de auditoria energética mais resilientes e robustos, além de garantir a independéncia geografica
de recursos computacionais para monitoramento e processamento de dados (ZISSIS; LEKKAS,
2011; GARG et al., 2022). Com isso, os dados energéticos coletados a partir do monitoramento
remoto dos circuitos de uma instalagdo poderiam ser enviados diretamente para uma aplicagdo
hospedada em nuvem, considerando que a infraestrutura legada ndo disponha dos recursos

computacionais necessarios para visualizagcdo, processamento € armazenamento.

Contudo, caso nao haja recursos para arcar com custos computacionais elevados em
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nuvem, dependendo do nimero de circuitos elétricos em uma instalacdo predial ou industrial,
a inferéncia dos valores de demanda energética previstos para cada circuito, bem como o
processamento dos parametros elétricos, pode se tornar um desafio, especialmente em cendrios
de expansao desses setores. Conforme exposto na Secdo 1.3, uma tendéncia para utilizagcdo de
tecnologias analiticas em contextos de conectividade, é a ado¢do do paradigma de TinyML. Tal
estratégia, permitiria a inferéncia da demanda energética e de outras grandezas em borda e em
tempo real, a um custo mais baixo, através de WSNs, eliminando a necessidade de recursos

computacionais adicionais nas infraestruturas legadas para realizar a tarefa de previsao.

Em suma, esta abordagem pode promover o monitoramento e/ou a previsao da demanda
de energia em instalagdes pré-existentes e nos seus respectivos circuitos, a partir da adaptacao
do metamodelo SmartL.VGrid e estratégias sistematicas de retrofit, empregando solucdes de
IoT e AloT, em borda, nuvem ou em ambos. Tais medidas viabilizam a gestdo de energia de
forma eficiente, sustentdvel, descentralizada e inteligente pelo lado da demanda no panorama

energético brasileiro, garantindo a maxima preservacao dos circuitos elétricos legados.

1.5 OBJETIVOS

O objetivo geral desta tese de doutorado € formular estratégias de retrofit fundamentadas
em arquiteturas sistémicas, adaptadas do metamodelo SmartLVGrid, para otimizar e modernizar
a gestdo energética em unidades consumidoras legadas com recursos preditivos, monitoramento
remoto e processamento distribuido. A atencao se concentrard, principalmente, em unidades

consumidoras localizadas no Brasil, regidas pela Agéncia Nacional de Energia Elétrica (ANEEL).

As arquiteturas propostas consideram a padronizacdo de interfaces fisicas e 1dgicas para
a coleta de parametros dos circuitos elétricos legados em tempo real por meio de middlewares
de retrofit. Também incluem comunica¢do em rede de dados por meio de especificacdes de
interoperabilidade, de maneira a se adaptarem da melhor forma as necessidades da infraestrutura
existente. Foi demonstrado que os sistemas propostos proporcionam escalabilidade em ambientes
prediais e industriais, através do desenvolvimento de clusters de monitoramento energético

compostos por elementos operadores e coordenadores.

Com esta proposta, busca-se proporcionar recursos robustos para a gestdo energética pelo
lado da demanda, que incluem a visualizacdo, o processamento e o armazenamento de dados
localmente ou em nuvem, para apoiar o gerenciamento energético das unidades consumidoras,
em conformidade com as diretivas da ANEEL. Junto a isso, com os dados adquiridos da
infraestrutura legada, muitas vezes de dificil obtencdo sem a metodologia adequada, objetiva-se
a previsdo da demanda energética por meio de métodos estatisticos e de aprendizado de maquina,
das instalacdes e dos seus respectivos circuitos em andlise, para os proximos 15 minutos, com
o intuito de detectar ultrapassagens de demanda contratada conforme estipulado pela ANEEL.
Nesse processo, os modelos de aprendizado foram otimizados para obter o melhor desempenho

possivel e, posteriormente, comparados para definicio do melhor modelo no cendario em andlise.
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Visando beneficiar instalagdes com recursos limitados para investimento em capacidades
computacionais, pretende-se fomentar a previsdo de demanda nos proprios dispositivos de retrofit,
seguindo as premissas do TinyML, com o intuito de que as inferéncias ndo incorram em custos

computacionais adicionais para a gestao energética das instalagdes legadas.

De maneira mais especifica, os objetivos desta tese sdo listados e descritos a seguir:

* Propor arquiteturas sist€émicas baseadas em estratégias de retrofit que preconizem a preser-

vagdo dos circuitos elétricos de unidades consumidoras legadas brasileiras.

* Adaptar o metamodelo SmartL.VGrid para habilitar o monitoramento descentralizado de

energia e parametros elétricos em tempo real, conforme as arquiteturas propostas.

* Desenvolver dispositivos de hardware e seus respectivos firmwares especializados na

mensuragdo de grandezas elétricas, incluindo a demanda energética.

* Adaptar os recursos de redes as necessidades das instalacdes em andlise conforme a

realidade das instalacdes legadas exploradas neste trabalho.

* Integrar recursos computacionais descentralizados para virtualizar os circuitos elétricos de

maneira sistemadtica, conforme as arquiteturas propostas.

* Conceber uma soluc¢do AloT para a previsdo de demanda de energia, destinada a instala¢des

legadas brasileiras e seus circuitos, utilizando as estratégias de retrofit propostas.

* Implementar, otimizar, comparar e identificar as técnicas estatisticas e de aprendizado de

maquina mais adequada para as tarefas de previsao de demanda nos cendrios em andlise.

* Propor uma metodologia eficaz para a criagdo de bancos de dados, que se baseia no

monitoramento sistematico de circuitos pré-existentes.

* Elaborar um método para previsao de ultrapassagens da demanda contratada, conforme as

diretrizes da ANEEL, destinado a unidades consumidoras legadas e seus circuitos.

* Promover a inferéncia de previsdes de séries temporais de demanda energética a partir dos
préprios dispositivos de retrofit, segundo as premissas do TinyML, para atribuir andlises
energéticas preditivas e descentralizadas em instalagdes legadas, evitando custos adicionais
com recursos computacionais avangados, e promovendo escalabilidade na implantagdo de

sistemas inteligentes de monitoramento energético.

1.6 REVISAO DE LITERATURA E TRABALHOS RELACIONADOS

Neste trabalho, almejamos a otimizacio do uso de energia, utilizando tecnologias avanga-
das que possibilitam o monitoramento remoto em tempo real e a previsdo da demanda energética

em instalagdes prediais e industriais legadas, incluindo seus circuitos elétricos.
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A seguir, serdo apresentados alguns dos conceitos bésicos de eficiéncia energética no
contexto energético brasileiro, que serdo discutidos ao longo das experimentagdes dos artigos
publicados como parte desta tese. Em seguida, apresentamos alguns trabalhos relacionados
ao tema desta pesquisa. Esses trabalhos estdo subdivididos em conformidade com os tépicos
abordados nas experimentacdes realizadas ao longo deste trabalho, que incluem solucdes para
gerenciamento energético, modernizagdo tecnoldgica e recursos preditivos no setor elétrico.
Aproveitamos a oportunidade para expor algumas definicdes do metamodelo SmartL.VGrid, que
serd utilizado como base para implementacdo das estratégias propostas nas implementacoes
expostas ao longo deste trabalho. E importante mencionar que os artigos anexados como capitulos
desta tese contém parte dos detalhamentos adicionais a cerca do estado da arte e da técnica
apresentados nesta se¢ao.

1.6.1 Eficiéncia Energética

A eficiéncia energética refere-se a otimizagdo do consumo de energia, alcancada pela
aplicacdo de prdticas comportamentais, econdmicas e tecnoldgicas em sistemas € processos
(GODOI, 2011). O objetivo subjacente, € minimizar o uso de energia sem comprometer a
quantidade ou a qualidade dos produtos e servigos produzidos, tanto no curto quanto no médio e
longo prazo. Para alcangar essa otimizagdo, é fundamental compreender a demanda energética
especifica de um sistema e, consequentemente, desenvolver planos eficazes para reduzir o

consumo de energia progressivamente.

Para evidenciar a relevancia destes parametros, serdo discutidos os conceitos de consumo
e demanda no contexto energético brasileiro, alvo das experimentacdes apresentadas neste
trabalho.

1.6.1.1 Consumo e Demanda de Energia

A quantificacdo do consumo de energia de uma unidade consumidora ou de um circuito
individual se dé pela totalizacdo da energia util ou reativa utilizada ao longo de um intervalo
de tempo. Em contrapartida, a demanda energética se estabelece como a média das poténcias
exigidas pelas cargas de uma unidade consumidora, um cdlculo realizado em periodos de 15
minutos, conforme o padrao adotado no Brasil (VIANA et al., 2012). No Brasil, existem duas
categorias nas quais as unidades consumidoras sdo enquadradas, denominadas Grupo A e Grupo
B, as quais diferem entre si quanto as caracteristicas e padroes de consumo de energia (ANEEL,
2021b). As unidades pertencentes ao Grupo A recebem energia com tensdes iguais ou superiores
a 2,3 kV e sdo tarifadas tanto pelo consumo quanto pela demanda energética contratada (kW).
J4 as unidades classificadas como Grupo B sdo alimentadas com tensdes menores que 2,3 kV
e sua tarifacdo se dd exclusivamente pelo consumo acumulado de energia (kWh). As unidades
do grupo A incluem instalagdes de médio e grande porte, como edificios e industrias. Por outro

lado, instalacdes do grupo B incluem residéncias e instalagdes de pequeno porte.
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Dessa forma, o monitoramento e a proje¢do da demanda e do consumo de energia de
uma unidade consumidora ou de cargas especificas se tornam fundamentais para maximizar a
economia de energia. O monitoramento em tempo real capacita os gestores a antecipar e atuar
em situacdes de demanda excessiva, minimizando, assim, as despesas associadas ao excedente
da demanda contratada. Ademais, a aplicacao de técnicas preditivas pode contribuir ainda mais

para o processo decisorio em relacdo a gestdo energética do lado da demanda.

A seguir, continuamos com trabalhos relacionados ao monitoramento energético de
tempo real utilizando solu¢des IoT. Em seguida, apresentamos trabalhos relacionados com
processos de evolucdo tecnoldgica por meio de técnicas e recursos de retrofit, middleware,

interoperabilidade e metamodelos utlizados em processos de conversdo tecnoldgica.

1.6.2 Gerenciamento Energético no Paradigma de IoT

O monitoramento de energia desempenha um papel fundamental na gestao eficiente do
setor elétrico, permitindo a avaliacido dos pardmetros elétricos da rede, do consumo de energia
e da qualidade energética. As solucdes baseadas na Internet das Coisas (IoT) t€ém se mostrado
relevantes nesse contexto, permitindo a implementacao de recursos de monitoramento em tempo
real e remotamente em ambientes residenciais, prediais, industriais e metropolitanos (ANAND
et al., 2022). Além disso, o paradigma de IoT facilita a interconexao de dispositivos dedicados
ao monitoramento energético e sua integracdo com sistemas computacionais, incluindo solucdes

baseadas em nuvem.

Diversos estudos tém abordado solugdes em tempo real baseadas em IoT para o monito-
ramento de energia. Por exemplo, em Sultania, Mahfoudhi e Famaey (2020), o monitoramento
energético em tempo real foi viabilizado por meio de dispositivos de hardware interconectados
em uma rede movel baseada em Narrowband [oT (NB-IoT) para aplicacdes de Smart Grids. Da
mesma forma, em Tanasiev et al. (2021) e Muralidhara, Hegde e PM (2020), foram utilizadas
solugdes digitais para fornecer dados de consumo de energia em tempo real aos usudrios por
meio de redes de dados sem fio. Em Govindarajan, Meikandasivam e Vijayakumar (2020),
foi realizado um estudo de avaliacao de desempenho de diferentes solu¢des de IoT em tempo
real. Por fim, em Shivaraman et al. (2020), foi apresentada uma solucao descentralizada para o

monitoramento energético em tempo real a partir de dispositivos moéveis.

1.6.3 Modernizacao por Técnicas de Retrofit

A abordagem de retrofit envolve a atualizag¢do de sistemas antigos ou tecnologicamente
obsoletos, tornando-os atualizados e adicionando novos recursos (SERI et al., 2021). Essas técni-
cas sdo frequentemente aplicadas a estruturas de edificios e dispositivos legados para preserva-los
e atualiza-los, requerendo um conhecimento especifico dos elementos e infraestruturas existentes,
para garantir interfaces adequadas e a implantacdo segura das funcionalidades desejadas. Por

exemplo, em Lall et al. (2022), os autores propuseram uma arquitetura de retrofitting para
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equipamentos legados, utilizando sensores externos para coleta de dados e andlise em nuvem,
demonstrando sua viabilidade em um ambiente de laboratodrio. O trabalho Kumar, Srinivasan e
Mani (2022) apresenta uma abordagem de retrofit baseada para avaliar a eficdcia da integracao
de sistemas de sensoriamento baseados em IoT em edificios inteligentes, demonstrando sua
viabilidade como ferramentas de avaliacao de sustentabilidade. J4 em Martin-Garin et al. (2018),
foram apresentadas solugdes para a automagdo de infraestruturas legadas usando estratégias de

retrofit.

1.6.4 Solucoes de Middleware e de Interoperabilidade para Aprimoramento Tecnolégico

As solugdes de middleware fornecem conexdes entre sistemas heterogéneos em niveis
fisicos ou légicos. Por outro lado, a interoperabilidade entre esses sistemas € um dos desafios
mais complexos no dominio IoT, tanto no desenvolvimento de software quanto de hardware
(ZHANG et al., 2021; MISHRA; VARMA et al., 2021). Em certas situacdes, € necessario
garantir a interacdo entre sistemas diferentes, independentemente do protocolo de comunicacao
utilizado (LEE et al., 2021; RAHMAN; HUSSAIN, 2020). O uso de solu¢des de middleware e
interoperabilidade facilita a escalabilidade de aplicagdes 10T, a conexao e interacdo com sistemas

existentes, reduzindo a complexidade da integragdo de novas tecnologias.

A literatura apresenta diversos estudos que exploram a convergéncia tecnoldgica por meio
de solugdes de interoperabilidade. Por exemplo, os autores de Fortes et al. (2019), propuseram
uma arquitetura para viabilizar a interoperabilidade e interconexdo de dispositivos em um
campus universitario, servindo como demonstragdo para futuras aplicagdes em Smart Cities. O
estudo apresentado em Ali et al. (2023b) propde um novo middleware para cidades inteligentes
que integra Internet das Coisas e big data, para superar desafios como heterogeneidade de
dispositivos e seguranca, com sua eficacia comprovada por testes de desempenho e equilibrio
de carga. Além disso, em Araujo et al. (2018a), € implementado um modelo de Smart Grids
a partir de uma estrutura de mediacdo baseada na modernizacdo de medidores antigos para
monitorar pardmetros elétricos em Redes de Sensores Sem Fio (WSNs). O mesmo grupo de
autores propde uma metodologia para a interoperabilidade de medidores antigos em Smart
Grids usando WSNs em Aratjo et al. (2018b). Em Koo e Kim (2022), os autores propdem
um framework de interoperabilidade, incluindo um sistema com recursos de 0T que facilita
a identificacdo e o uso de servigos entre plataformas heterogéneas, convertendo caminhos de

recursos especificos em formatos de solicitagao para cada plataforma.

1.6.5 Metamodelos em Sistemas Tecnolégicos

Assim como os modelos representam uma realidade, os metamodelos sdo utilizados
para criar novas linguagens de modelagem ou expandir as existentes (JEUSFELD, 2009). Eles
desempenham um papel importante na anélise, criacdo e desenvolvimento de modelos de in-

tegracdo de sistemas, incluindo a integracdo de sistemas antigos com interfaces de mediacao
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e interoperabilidade (MOHANTY, 2015; FERNANDES et al., 2022). Assim, infere-se que os

metamodelos facilitam a transi¢ao tecnoldgica de sistemas pré-existentes.

Na literatura, existem estudos que relatam casos de sucesso utilizando essa abordagem de
metamodelos. Por exemplo, em Abdelouahid, Marzak e Sae (2018), é proposto um metamodelo
de IoT para conectar objetos heterogéneos com alto nivel de interoperabilidade. Em Hassine,
Khayati e Ghezala (2017), também € implementado um metamodelo de 10T, capaz de transformar
solucdes de software escritas em uma linguagem de modelagem especifica para uma aplicagdo
em Java, visando padronizar o desenvolvimento de forma orientada. J4 em Cicirelli et al. (2016),
¢ proposto um metamodelo para a interacdo de dispositivos em ambientes inteligentes por meio
de modelagem de relacdes e atributos. Em Gomes et al. (2017), € introduzido um meta sistema
para facilitar a transi¢do de sistemas antigos de distribuicdo de energia elétrica para o para-
digma de Smart Grids, por meio de estratégias de moderniza¢do. O metamodelo SmartL.VGrid,
derivado desse meta sistema, € apresentado em Gomes et al. (2019), fornecendo primitivas e
protocolos para o uso de solu¢des de mediagdo e interoperabilidade por meio da modernizagdao
de sistemas elétricos antigos de baixa tensdo. Esse metamodelo pode ser estendido a qualquer
nicho tecnoldgico, incluindo o setor elétrico. Nao foram encontradas outras abordagens similares
na literatura. Portanto, o metamodelo SmartLVGrid sera utilizado neste trabalho como base
para a modernizacao de circuitos elétricos, permitindo o monitoramento remoto dos parametros

elétricos. A seguir, apresentamos em detalhes o metamodelo SmartL.VGrid.

1.6.6 O metamodelo SmartLVGrid

O SmartLVGrid, ou Smart Low Voltage Grids, apresenta um metamodelo orientado
a conversao de circuitos de baixa tensdo pré-existentes para o paradigma de Smart Grids em
sistemas de distribuicdo de energia. O modelo se baseia em uma série de protocolos projetados
para incrementar funcionalidades de controle, supervisdo e comunicacio em sistemas existentes
por meio de estratégias de retrofit. O SmartLVGrid opera tanto a nivel local, pr6ximo ao
consumidor, quanto a nivel central, em centros de controle de empresas de energia. A distin¢ao
geografica desses niveis demanda o uso de interfaces de redes locais (LANs) ou metropolitanas
(MANSs) para estabelecer a conexao ldgica entre os sistemas legados, e os centros de supervisao
e controle (SCC). A estrutura de protocolos adotada pelo modelo SmartL.VGrid € demonstrada

na Figura 3.

Como mostra a Figura 3, o metamodelo SmartL.VGrid engloba as camadas de intero-
perabilidade e de middleware. De acordo com a estrutura de protocolos, a modernizagdo deve
ser feita na infraestrutura existente, em pontos de interface, ou Points of Interface (Pol), onde
ocorrem as interacdes. A camada de middleware se conecta a camada legada através de um n6
de acoplamento e interacdo, conhecido como CIN (Coupling and Interaction Node). Esse enlace
facilita a execucdo de microprocessos, denominados Fun¢des de Retrofitting de Dominio (DRFs),

que sdo uma das categorias de primitivas operacionais (OPs) definidas pelo SmartL.VGrid.
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Figura 3. A pilha de protocolos do metamodelo SmartLVGrid (FERNANDES et al., 2022).

As primitivas operacionais sdo descritas como processos antes realizados por operadores
de campo no sistema elétrico legado que passam a ser executados através dos nos de acoplamento
e interagdo e pelos nds de servico (SN), unidades 16gicas responsaveis pela interface entre as
camadas de middleware e de interoperabilidade. As fun¢des de suporte computacional (CSFs)
implementam servigos de processamento e armazenamento na camada de middleware. Por outro
lado, as fun¢des de suporte entre dominios (ISFs) realizam os processos de comunicagao na
mesma camada. A seguir, serdo detalhadas as camadas de middleware e de interoperabilidade,

que compdem o metamodelo SmartL.VGrid.

1.6.6.1 A Camada de Middleware do Metamodelo SmartL.VGrid

Localizada na base da estrutura do metamodelo, a camada de middleware € implementada
fisicamente através de dispositivos de retrofit, compostos por hardware embarcado, sensores e
atuadores que se adequam as DRFs a serem executadas. Esta camada também € conhecida como

Automation and Communication Unit (ACU) e sua representagdo € retratada na Figura 3.

O modelo representativo do ACU conta com trés portas: "In/Out", "Get"e "Run". As
ISFs operam os processos e servicos de comunicacao através da porta "In/Out"do ACU. A porta
"Get"implementa a coleta de dados obtidos por meio de DRFs associadas a medi¢des e deteccao.
Por dltimo, a porta "Run"atua com DRFs de controle sobre a camada legada. Vale destacar que
as rotinas de processamento e armazenamento de dados do ACU sao implementadas pelas CSFs,

juntamente com outras funcdes de suporte computacional.
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1.6.6.2 A Camada de Interoperabilidade do Metamodelo SmartL.VGrid

A camada de interoperabilidade ¢ incumbida de assegurar um conjunto de normas, hie-
rarquias e a infraestrutura necessdria para a implementagdo de uma rede de ACUs que interaja
com estes dispositivos e aproveite suas funcionalidades. Nesta camada, cada ACU ¢€ classificado
conforme sua posi¢do na hierarquia do metamodelo SmartLVGrid. Os ACUs que supervisionam
e monitoram outros ACUs e, opcionalmente, executam DRFs sdo chamados de coordenadores
(coordinators). Os ACUs que executam DRFs na camada legada e sdo supervisionados pelos co-
ordenadores sdo chamados de operadores (operators). Na eventualidade de expansdo do sistema
elétrico em operacao, o que implica maior capacidade computacional do ACU coordenador, o
metamodelo prevé subcoordenadores (subcoordinators) para cada grupo de ACUs operadores.
Portanto, os subcoordenadores estardo ligados a um tinico ACU coordenador que se comunicara
com o centro de controle para transmitir informagdes do sistema. E importante ressaltar, que cada
ACU tem sua propria unidade de processamento, possibilitando o processamento distribuido do

sistema a partir da modernizacdo de cada ativo legado.

A seguir, apresentamos os trabalhos relacionados com previsao e predi¢cdo de demanda e
consumo energético com métodos estatisticos e modelos de aprendizagem de maquina, que corro-
boram com recursos preditivos para aprimorar processos de tomadas de decisdo, o gerenciamento

e o controle de carga em sistemas elétricos.

1.6.7 Previsao de Demanda Energética com Métodos Estatisticos

A previsao de demanda energética e do consumo de energia é um tema amplamente
pesquisado na literatura. Os métodos estatisticos mais comumente utilizados nesse contexto sao
baseados em técnicas autorregressivas, sendo os mais conhecidos o Autoregressive Integrated
Moving Average (ARIMA) e o Seasonal ARIMA (SARIMA). Por exemplo, em Zieliniska-
Sitkiewicz et al. (2021), o método SARIMA foi utilizado para prever o consumo energético na
Polonia em diferentes escalas de tempo. O trabalho de Velasquez et al. (2022) utilizou o método
ARIMA para estimar a demanda energética no Brasil e avaliar sua previsibilidade com dados
reais. Ja em Silva et al. (2022), o método SARIMA foi empregado para prever o consumo de
energia no setor industrial brasileiro em curto prazo. Esses métodos estatisticos permitem a
previsao da demanda energética futura com base em valores passados de demanda, utilizando
técnicas de reordenagdo dos dados presentes nos conjuntos de dados. Além disso, trabalhos
como Shah, Jan e Ali (2022) e Manno, Martelli e Amaldi (2022) utilizaram o método de janela

deslizante e modelos autorregressivos para prever a demanda energética de curto prazo.

1.6.8 Previsao de Demanda Energética com Aprendizado de Maquina

Embora os métodos estatisticos sejam eficazes na previsao de séries temporais com
padrdes de sazonalidade e tendéncia bem definidos, eles podem ser limitados quando a série

temporal apresenta padrdes mais complexos e ndo-lineares. Nesses casos, os métodos de machine
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learning podem oferecer melhores resultados (RAJULA et al., 2020). Por exemplo, em Pavlicko,
Vojtekova e Blazekova (2022), foram propostos modelos baseados em redes neurais artificiais
para prever o consumo de energia elétrica na Eslovaquia. Os autores de Aisyah et al. (2022)
utilizaram modelos de Regressdao de Vetor de Suporte (SVR) e Regressdao Generalizada (GRNN)
para prever o consumo de energia na Indonésia. Em Shirzadi et al. (2021), a regressdo de Floresta
Aleatoria (RFR) e o SVR foram aplicados para prever o consumo de eletricidade em médio prazo
com base em um conjunto de dados do Canadé. O uso de métodos de ensemble learning, como o
regressor XGBoost (XGBR) e o RFR, para prever a demanda de energia no dia seguinte durante

o periodo da pandemia, foi relatado em Arjomandi-Nezhad et al. (2022).

Em casos de grande volume de dados, relagdes ndo-lineares, presenca de ruidos e
comportamentos nao estaciondrios, as redes neurais profundas podem ser uma alternativa ao
aprendizado de méaquina. No entanto, € importante ressaltar que as redes neurais profundas
exigem mais recursos computacionais e sao mais complexas em comparac¢do com os modelos
supervisionados de machine learning. E comum que os autores utilizem redes neurais recorrentes,
especialmente as redes LSTM, em conjunto com técnicas de janela deslizante (BASHIR et
al., 2022; ELKAMEL et al., 2020; TORRES; MARTINEZ-ALVAREZ; TRONCOSO, 2022;
MUSTAQEEM; ISHAQ; KWON, 2021).

1.6.9 Previsao de Demanda Energética no Contexto de Instalacoes Prediais

Os trabalhos mencionados anteriormente contribuem para o estado da arte da previsdao
de demanda e consumo energético. No entanto, esses trabalhos estdo focados em previsdes de
interesse de companhias energéticas, localidades regionais ou nacionais, ndo estando diretamente
relacionados com instalagdes dos setores prediais e industriais. Portanto, buscamos trabalhos
na literatura que investigassem o contexto predial e as aplicagdes da previsdo de demanda
voltadas para suas instalacdes. Por exemplo, em Nabavi et al. (2021), foi realizada a previsao
de demanda e geracdo de fontes renovaveis de energia elétrica (fotovoltaica e edlica) em 5
residéncias inteligentes. Esse estudo utilizou redes LSTM como modelos de previsdo e cerca de
11 meses de dados coletados. Ja em Eseye et al. (2019), o modelo de perceptron multicamadas
foi utilizado para prever a demanda de edificios residenciais, educacionais e de uso misto nas
proximas 24 horas. O trabalho de Lee, Kim e Gu (2023) realizou a previsdo de energia em uma
empresa de alimentos com base em dados obtidos do sistema de gestdo de energia da fébrica,
utilizando os métodos SVR e perceptron multicamadas (MLP). Em Mounter et al. (2021), foi
realizado um estudo para auxiliar gestores e técnicos com previsdes energéticas de longo prazo
para um edificio da Universidade de Teesside (Reino Unido), utilizando diferentes técnicas
de aprendizado de méaquina, como regressao linear, SVR e redes neurais. Os autores Durand,
Aguilar e R-Moreno (2022) realizaram a previsao de demanda utilizando redes LSTM aplicadas
ao contexto de Smart Buildings. No trabalho Mariano-Herndndez et al. (2022), foram utilizados
dados de consumo energético de contadores inteligentes instalados em subestacdes de edificios,

que registraram o consumo de todo o edificio em intervalos de 15 minutos. A partir desses dados,
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os autores analisaram a integracdo de métodos de previsdo de consumo para melhorar a eficiéncia

energética em instalacdes prediais.

1.6.10 Solucoes de AIoT para Gerenciamento Energético

Além disso, selecionamos alguns trabalhos que incorporam o conceito de AloT (Artificial
Intelligence of Things) para andlise de energia elétrica, no intuito de apresentar solugdes de
inteligéncia artificial baseadas em dados energéticos obtidos de solugdes digitais de IoT. Por
exemplo, em Arivukkody, Gokulakannan e Kalpana (2022), foi desenvolvido um dispositivo de
hardware para monitorar a presenga humana e o consumo energético em unidades consumidoras
residenciais. Utilizando um modelo de drvore de decisdo sobre uma base de dados armazenada
em nuvem, o desperdicio de energia foi determinado. De forma similar, em Das, Zim e Sarkar
(2021), um sistema de controle de energia foi desenvolvido com base em um hardware que
utiliza comunicacdo Wi-Fi, relés, sensores de corrente e armazenamento em nuvem. O mesmo
algoritmo de arvore de decisao foi empregado nesse sistema. No trabalho Salama e Abdellatif
(2022), redes neurais foram utilizadas para prever o consumo de energia com base em dados
coletados por sensores de um sistema residencial, permitindo desligar um ou mais dispositivos
com o objetivo de reduzir o consumo mensal. J4 em Zhu, Ota e Dong (2022), um framework de
Artificial Intelligence (Al) foi implementado em dispositivos de borda para melhorar a eficiéncia

energética.

1.7 LACUNAS NA LITERATURA

Embora os estudos referenciados tenham enriquecido significativamente o estado da arte
e a técnica em suas respectivas dreas de interesse, identificamos vdrias lacunas na literatura atual.
Estas lacunas, que serdo detalhadamente exploradas e abordadas no contexto deste trabalho
de tese, sdo particularmente relevantes dado o cendrio energético das unidades consumidoras

brasileiras. Enumeramos essas lacunas nos tépicos seguintes:

1. Inexisténcia de trabalhos que empreguem estratégias de retrofit para atualizar sistemas
legados utilizando solugdes 10T, adaptando tipologias de rede adequadas ao contexto
das instalacdes, e incorporando recursos computacionais com o objetivo de otimizar a

eficiéncia energética.

2. Escassez de estudos que utilizem metamodelos ou arquiteturas genéricas para padronizar e
facilitar a implementacao de recursos de automacao, controle, processamento distribuido
e comunicacdo em sistemas elétricos, independentemente de sua natureza, utilizando

técnicas de retrofit para viabilizar a gestdo de energia em instalacdes legadas.

3. Devido ao foco em contextos particulares e a falta de uso de modelos arquiteturais siste-

matizados, as solugdes existentes podem apresentar limitacdes quando aplicadas a outros



33

casos e sistemas. Isso dificulta a escalabilidade, o processamento distribuido e até mesmo

a interoperabilidade com outras aplicagdes.

4. Os estudos atuais ndo propdem solucdes de middleware para estabelecer interfaces fisicas e
l16gicas com sistemas legados ou recursos que facilitem a interoperabilidade de dispositivos
sensores no contexto de eficiéncia energética. Como resultado, muitos trabalhos ndo
incluem a anélise de dados a nivel de circuito individual em uma instalacdo, especialmente

no contexto dos setores elétricos legados.

5. Grande parte dos estudos existentes depende de bases de dados geradas por terceiros,
sem solucdes AloT especificas de tempo real projetadas para construir bases de dados
que registrem padrdes ou caracteristicas de toda a instalacdo elétrica, além de circuitos e

setores individuais. Isso dificulta a andlise de instalagdes prediais e industriais legadas.

6. Falta de investigagcdes que abordem a previsao do consumo de energia e demanda a nivel de
circuito dentro das instalacdes legadas. Isso inclui trabalhos que fornegam solugdes AloT
que permitam a previsao ou detec¢ao de ultrapassagens de demanda em infraestruturas

pré-existentes.

7. Nao foram encontradas solu¢gdes que utilizem TinyML no contexto para previsdao de

demanda ou consumo energético de instalacdes legadas e seus respectivos circuitos.

1.8 ORGANIZACAO DO DOCUMENTO DE QUALIFICACAO DE DOUTORADO

Este documento de qualificagcdo esta estruturado da seguinte maneira:

» Capitulo 2: Neste capitulo, sdo apresentados dois artigos publicados em periédicos com
avaliacdo Qualis A. Cada artigo € acompanhado por seu respectivo resumo em portugués,
além de uma descric¢ao detalhada da revista em que foi publicado e de seu corpo editorial.

Os artigos s@o reproduzidos na integra neste capitulo.

O Artigo 01, denominado "A Retrofit Strategy for Real-Time Monitoring of Building Elec-
trical Circuits Based on the SmartLVGrid Metamodel", descreve uma estratégia de retrofit
apoiada por um modelo arquitetural sistémico. Essa estratégia é projetada para incorporar
ferramentas de gestdo energética em instalagdes prediais legadas, em conformidade com
os padroes da ANEEL no Brasil. O trabalho foca na capacidade do monitoramento IoT
em tempo real dos circuitos, a partir do retrofit de quadros de distribuicao elétrica. Neste
trabalho, desenvolvemos e refinamos os dispositivos responsaveis pelas interfaces fisicas
e logicas para aquisicao de dados da infraestrutura existente. Isso foi realizado a partir
da adaptagdo de primitivas operacionais inspiradas nas pilhas de protocolos do metamo-
delo Smartl.VGrid, viabilizando a utilizacdo da metodologia proposta em outros casos

e sistemas na esfera da gestdo energética. Esta iniciativa englobou o desenvolvimento
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de hardware, firmware e solucdes de comunicacio sem fio em barramento, bem como
uma aplicacdo de software hospedada em nuvem, projetados para se ajustar e validar as
premissas do modelo arquitetural proposto. Além de apresentar os pardmetros monitorados
em tempo real, incluindo a demanda energética e fator de poténcia, realizamos um estudo
de caso com o sistema proposto para mitigacao e reducdo da demanda da instalacdo, para
reduzir ultrapassagens de demanda contratada junto a concessiondria de energia da unidade

consumidora em estudo.

Em seguida, o Artigo 02, intitulado "A Demand Forecasting Strategy Based on a Retrofit
Architecture for Remote Monitoring of Legacy Building Circuits", surge como uma conti-
nuacao refinada do artigo anterior. O trabalho foca em uma estratégia de retrofit ancorada
em uma arquitetura AloT e adaptada a partir das pilhas de protocolo do metamodelo Smar-
tLVGrid, visando monitorar e prever as demandas de energia de uma instalacio legada e
dos circuitos que a compdem. Neste contexto, houve um aprimoramento significativo no
hardware de monitoramento em relacdo ao Artigo 01, tornando-o mais robusto. Apesar
da pesquisa ter sido realizada em uma instalagdo fabril pré-existente, foram incorporadas
solucdes inovadoras para moldar os sistemas de comunicacao conforme as necessidades
industriais. Uma das contribui¢des notaveis deste trabalho foi a integracdo de uma rede
sem fio Peer-to-peer (P2P) destinada ao monitoramento de circuitos em quadros legados de
distribuicdo industrial. Mantendo o compromisso com a amplia¢c@o da gestdo energética no
panorama brasileiro, o trabalho apresenta uma ferramenta para previsdes de demanda de
curto prazo, para os proximos 15 minutos. Alinhado as normativas da ANEEL, nossa pes-
quisa se posiciona como uma resposta proativa a previsao de possiveis picos de demanda
em unidades consumidoras brasileiras, para evitar oneracdes adicionais com ultrapassagens
de demanda contratada junto as concessiondrias de energia. Durante o estudo, avaliamos
e detalhamos modelos de aprendizagem para previsdo de séries temporais de demanda
energética, desde a fase inicial de pré-processamento de dados até a otimizagdo e andlise de
resultados. Adicionalmente, proporcionamos uma alternativa para obter dados energéticos
de unidades consumidoras legadas e seus respectivos circuitos, abordando uma lacuna

pouco explorada na literatura.

* Capitulo 3: Este capitulo apresenta uma perspectiva generalista frente as pesquisas apre-

sentadas nos artigos publicados.

 Capitulo 4: Este capitulo aborda as conclusdes parciais deste documento de qualificacdo
e as perspectivas futuras quanto ao trabalho de pesquisa do documento final de tese de

doutorado.

No Anexo A, disponibilizamos nossa publica¢do aceita para o 15th IEEE/IAS Internatio-
nal Conference on Industry Applications - INDUSCON 2023. Nesta publicacio, apresentamos
uma nova abordagem para otimizacao bayesiana de modelos de aprendizado de maquina, com
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o intuito de obter o melhor desempenho em aplicagdes de predi¢cdo de consumo energético.
Através de nossa proposta de otimizagdo, superamos as métricas de desempenho do estado da
arte para predi¢do de consumo energético de curto prazo, em intervalos de 15 minutos e 1 hora.
A base de dados utilizada é denominada "STEEL INDUSTRY ENERGY CONSUMPTION”
e € disponibilizada pelo IEEE (EASWARAMOORTHY, 2022). Esta base de dados fornece
informacdes referente ao consumo energético de uma industria metaldrgica da Korea do Sul,
denominada DAEWOO Steel Co. Ltd. Utilizamos o processo de otimizagdo proposto neste
paper na otimizacdo dos algoritmos de aprendizagem de miquina presentes no Artigo 2, para
garantir os melhores resultados de previsdo possiveis dentro do cendrio proposto. Aguardamos a
convocagao deste paper para uma versdo extendida a ser publicada na revista IEEE Transactions
on Industry Applications, com avaliacdo Qualis CAPES A1 em Engenharias I'V.
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2 ARTIGOS PUBLICADOS

2.1 ARTIGO 01: A RETROFIT STRATEGY FOR REAL-TIME MONITORING OF BUIL-
DING ELECTRICAL CIRCUITS BASED ON THE SMARTLVGRID METAMODEL

2.1.1 Resumo

O paradigma da Internet das coisas (IoT) promove o surgimento de solugdes para
viabilizar estratégias de gerenciamento de energia. No entanto, essas solucdes podem favorecer
o descarte ou substituicdo de sistemas obsoletos, mas ainda necessarios. Assim, uma proposta
que preconize o retrofit de sistemas pré-existentes seria uma alternativa para implementar
0 monitoramento e gerenciamento de energia. Nesse sentido, este trabalho apresenta uma
estratégia de monitoramento de parametros elétricos em tempo real por meio de solucdes loT,
aplicacdes hospedadas em nuvem e retrofitting de sistemas elétricos prediais legados. Nesta
implementagdo, adaptamos o metamodelo SmartL.VGrid para sistematizar a inser¢do de recursos
de monitoramento remoto em circuitos de baixa tensdo. Para isso, desenvolvemos plataformas
embarcadas para monitoramento dos circuitos de um quadro elétrico predial e uma aplicagao
para visualizacdo e armazenamento de dados na nuvem. Com isso, foi realizado o monitoramento
remoto da unidade consumidora em relagdo a demanda de energia, fator de poténcia e eventos
de variagdes de parametros elétricos nos circuitos do quadro de distribui¢ao legado. Também
realizamos um estudo de caso com o sistema proposto, identificando eventos de ultrapassagem de
demanda contratada na unidade consumidora, mitigando a contribui¢do individual dos circuitos
da instalacdo neste processo. Portanto, nossa proposta apresenta uma alternativa para viabilizar a

gestdo energética e aproveitamento maximo dos recursos existentes.
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Abstract: The Internet of things (IoT) paradigm promotes the emergence of solutions to enable energy-
management strategies. However, these solutions may favor the disposal or replacement of outdated
but still necessary systems. Thus, a proposal that advocates the retrofit of pre-existing systems would
be an alternative to implement energy monitoring. In this sense, this work presents a strategy for
monitoring electrical parameters in real time by using IoT solutions, cloud-resident applications, and
retrofitting of legacy building electrical systems. In this implementation, we adapted the SmartLVGrid
metamodel to systematize the insertion of remote monitoring resources in low-voltage circuits. For
this, we developed embedded platforms for monitoring the circuits of a building electrical panel
and application for visualization and data storage in the cloud. With this, remote monitoring of the
consumer unit was carried out in relation to energy demand, power factor, and events of variations of
electrical parameters in the circuits of the legacy distribution board. We also carried out a case study
with the proposed system, identifying events of excess demand in the consumer unit, mitigating the
individual contribution of the installation circuits in this process. Therefore, our proposal presents an
alternative to enable energy management and maximum use of existing resources.

Keywords: retrofit; SmartLVGrid; real-time systems; IoT; energy monitoring; energy efficiency

1. Introduction

Society drives the development of new technologies for automation, processes, and
systems in the most diverse sectors. Industries, cities, homes, and building installations are
examples of environments with constant technological transformations. In this context, the
digital paradigms of this millennium, such as Industry 4.0, Internet of things (IoT), smart
grids, smart cities, and smart buildings, promote technological convergence processes by
using digital integration solutions for monitoring and control of assets and inputs [1]. In
addition, through digital paradigms it is possible to optimize the assets present in these
environments, promoting flexibility, scalability, dynamism, and efficiency, in addition to
other socioeconomic benefits [2].

The digital transition obtained from the implementation of these paradigms can occur
abruptly or not [3]. The implementation time and the cost of digital solutions for this are
preponderant factors, because short-term transformations may require larger investments.
Usually, these types of solutions promote the disposal or replacement of resources that
could still be useful or with acquisition costs not fully amortized [4]. In such cases, it is
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necessary to employ processes that steer the technological transition gradually through
strategies based on leveraging legacy resources; otherwise, these processes would only be
feasible for absolutely new solutions.

The electricity sector, indispensable for the realization of many social and economic
practices, maintains much of its legacy structure from its conception [5]. This involves
performing manual processes to carry out maintenance and management of the legacy
electrical systems in operation [4]. Thus, specialized professionals are still needed in
the field to perform these activities, which makes it difficult to record and access data
in real time or which, occasionally, may lead to failures or field accidents. Thus, the
implementation of digital paradigms provides the opportunity for the emergence of new
techniques to automate electrical systems and enable energy management and efficiency.
In this sense, IoT solutions can be employed in energy-efficiency strategies through the
addition of real-time communication capabilities, distributed computing processing, and
the control and sensing of objects through interconnection in data networks [6,7]. In smart
grids and smart building models, in which the automation of electrical systems is widely
applied, IoT solutions ensure safety, efficiency, and maximum system excellence in their
operations [8-11]. However, despite the use of IoT in implementing new solutions for
energy monitoring and control, there is a lack of strategies to integrate new solutions with
legacy electrical systems.

The retrofit strategy, on the other hand, presents itself as a solution to this problem.
Through retrofitting, it is possible to update and customize old or technologically outdated
but still necessary systems, in order to preserve them and reduce costs in the addition of
new functionalities in legacy systems [12]. In addition, this strategy enables a gradual
rather than an abrupt technological transition in legacy electrical systems, making the
maximum use of pre-existing resources. Still, in order for retrofit to be used systemically in
the upgrade and integration of legacy electrical systems with IoT solutions, it is necessary to
use a reference model based on architectural definitions endowed with standardized logic
layers, protocols, and interaction interfaces applied to the specificities of this particular
context. However, the literature presents few works that employ retrofit techniques from
reference models to standardize their implementations, especially in the electrical sector.

At [5], the authors proposed a reference metamodel for smart grids, named SmartLV-
Grid. It enables the transition from a legacy passive low-voltage power distribution plant
to the smart grid paradigm by using the retrofit strategy in conjunction with systems engi-
neering concepts. SmartLVGrid is composed of protocol stacks that enable the integration
of legacy structures with compatible middleware (hardware and firmware). In addition,
these protocols specify how to realize the logical link (interoperability) of the developed
middlewares with a supervision and control center.

Interoperability, scalability, flexibility, and system efficiency are some of the essential
aspects to make energy management in the electricity sector viable, developed, and ma-
ture [13]. However, the SmartLVGrid metamodel does not address methods or resources
that advocate data analysis for real-time energy management, including virtualization
and integration of legacy systems with IoT solutions and computational tools such as
cloud computing, dashboards, and databases, for example. With data presented centrally
in the cloud, it is possible to use virtual environments to manage energy consumption
more effectively [14]. From this, we proposed a new method for managing low-voltage
legacy circuits based on the adaptation of the SmartLVGrid metamodel and the use of
the retrofit strategy. This way, we were able to make the most of pre-existing resources,
in addition to providing technological means to analyze energy efficiency by monitoring
electrical parameters with interactive dashboards in cloud software applications. In this
context, no studies were found in the literature that carried out investigations or practical
implementations of strategies, including a reference model and the use of retrofit, as the
authors in [5] found, to perform energy management in the proposed way.

In this article, we present a strategy, which employs IoT solutions, retrofit of legacy
electrical systems and cloud-resident applications, for real-time monitoring of legacy elec-
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trical parameters and energy management. As a proof of concept, the proposed strategy
was used to insert energy-monitoring resources in building circuits of a low-voltage power
distribution board. To implement remote monitoring, we developed embedded hardware
platforms and, respectively, their firmware, in order to implement the middleware and
interoperability layers of our adaptation of the SmartLVGrid metamodel, but adapted to
meet the circuits of the switchboard in use. Throughout this article, the details of the soft-
ware applications and platforms developed are described, at the physical and architectural
levels, with the necessary information to make it possible to use the same methodology
in the implementation of new solutions and guarantee the insertion of new functionali-
ties, preserving as much as possible the legacy infrastructures. In this sense, we raise the
following contributions related to this work.

(1) We introduce energy monitoring through the adaptation of the SmartLVGrid meta-
model, use of IoT solutions, and the use of the retrofit strategy in a systemic way,
enabling energy management and maximum preservation of legacy electric circuits.

(2) We develop hardware devices and their respective firmware, enabling the retrofit of
the circuits of a distribution board, based on the premises of the reference model.

(3) We develop a software application for circuit virtualization, with dashboards, database
and cloud computing resources, systematically integrated with the implementation of
the metamodel adapted in this work.

(4) We present the resources for monitoring the electrical quantities of each legacy circuit
of a low voltage building switchboard.

To present the proposal of this article, we divided the sections as follows. In Section 2,
we present a survey of the state of the art related to the theme. In Section 3, we present
a survey of the theoretical framework for the implementation of our proposal. Section 4
presents our model proposal, based on the retrofit of legacy low-voltage circuits of a power
distribution board. In Section 5, we present the materials and methods used, making them
compatible with the architecture exposed in the previous section. In Section 6, we present
the results obtained. In Section 7, we present the conclusions, along with proposals for
future work.

2. Related Work
2.1. Energy Monitoring Solutions in the Context of the IoT Paradigm

Energy monitoring improves efficiency and management in the electricity sector, en-
abling analysis of the grid’s electrical parameters, the demand consumed and the power
quality, and providing managers with resources (e.g., computational and data) for deci-
sion making. In this context, IoT solutions contribute to provide remote and real-time
monitoring and control in the residential, building, industrial and metropolitan sectors,
interconnecting devices to the energy system and integrating these devices with computing
systems, including cloud solutions [15,16].

Real-time applications enable monitoring in deterministic time, without conflicts and
in a prioritized manner so that all events and tasks are executed as expected. The relevant
literature presents work with real-time IoT solutions to implement energy-monitoring
systems. At [17], real-time energy monitoring was implemented via interconnected hard-
ware devices in a narrowband IoT (NB-IoT)-based mobile network for smart grid ap-
plications. Similarly, the authors of [18,19] have developed hardware devices to make
energy-consumption data available in real time to users over a wireless data network. The
authors of [20] used the Raspberry Pi 3 platform as an interface between an energy meter
and a graphic application for displaying data obtained in real time. At [21], the authors
exposed a study evaluating the performance of different real-time IoT solutions. On the
other hand, the authors of [22] presented a decentralized solution for real-time energy
monitoring from mobile devices.

In addition to real-time communication and monitoring, IoT solutions use computing
resources for data storage, processing, and visualization to analyze and expose parameters
for decision-making. From these, it is possible to elaborate databases to analyze and expose
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the main parameters of value for decision making. In this sense, the literature presents
works that use these resources in energy monitoring applications. In [23], the authors
used structured query language (SQL) databases, along with the graphical interfaces of
the developed application, to store and display the main electrical parameters and the
consumed demand of a building circuit. The authors of [24] presented energy consumption
and temperature measurements of a climate control system by using interactive dashboards.
At [25], the authors discussed IoT solutions for energy monitoring, including cloud data
storage and processing.

It is important to comment on the contributions of the literature in the IoT area for
improving energy efficiency. In this area, proposals involve energy-demand management
and power quality analysis of facilities. Energy-demand management uses monitored
data to develop strategies and make decisions for reducing energy consumption. The
authors of [26] presented a survey of the energy demand consumed by the School of
Telecommunication Engineering of the Polytechnic University of Madrid over the course
of one year. From the obtained data, the authors used a wireless network that employed
market devices to control the energy demand in the school. On the other hand, the
authors of [27] managed the energy demand of residences in a Simulink software model,
considering the insertion of renewable sources and networked devices. In addition, the
work [28] described an energy-management system that uses real-time IoT platforms in
order to improve energy efficiency.

Proposals in the literature that use IoT for facility power quality analysis seek to
improve power quality in metropolitan, industrial, building, or residential settings. In the
works [29-32], for example, the authors have developed hardware devices to remotely
monitor voltage sags, swells, and the electrical parameters of the circuits used. In [33], the
authors proposed an algorithm for disturbance and event analysis in the context of power
quality. For this, they employed real-time IoT devices in monitoring the parameters and
stored the obtained data in the cloud for further use of the algorithm. In [34], the authors
motivated the need to monitor electrical parameters to improve power supply reliability
and power quality. In this same work, the authors also presented the development of a
device capable of remotely monitoring the number and duration of power interruptions
and voltage variations on both sides of circuit switching devices, with the possibility of
local storage in case of failures of communication.

Tables 1-4 summarize the works associated with the context of this article and cited in
the subsection. However, in our literature search, we did not find works that use retrofit
strategies to take advantage of legacy systems based on IoT solutions and computational
resources in order to offer resources to improve energy efficiency and power quality. Thus,
the solutions exposed are focused on the particular context of their applications, which
may make it infeasible to implement the proposed strategies in other cases. In addition,
we did not find studies that propose metamodels capable of providing the insertion of
automation, electronic control, distributed processing and communication resources in
electrical systems from retrofit techniques for the same purpose of energy management.

Table 1. Works with emphasis on energy efficiency.

Work Year Application
[26] 2021 Demand control from WSN
[27] 2018 Demand Management with Renewable Sources

[28] 2019 Demand Management with IoT Solutions
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Table 2. Works with emphasis on computational resources for energy management.

Work Year Application
23] 2019 Use of databases and interfaces to displa.y el.ectrical
parameters and the demand of a circuit
[24] 2018 Interactive dashboards for consumption display energetic
[25] 2021 Methods of viewing, storing and cloud energy data processing

Table 3. Work on real-time systems for energy monitoring.

Work Year Application
[17] 2020 Energy demand monitoring in a real-time NB-IoT network
[18-20] 201286220020 Development of devices for real-time consumption monitoring
[21] 2020 Evaluation of real-time solutions for energy monitoring
[22] 2020 Decentralized monitoring solution energy in mobile devices

Table 4. Work with emphasis on power quality analysis.

Work Year Application
[29-32] ig}g’ égg Devices for monitoring sags, swells and electrical parameters

Algorithm for disturbance and event analysis of power

[33] 2020 quality with IoT devices

Development of a device and an algorithm applied to the remote
[34] 2020 monitoring of power interruptionsand voltage
variations in switching circuits

2.2. Retrofit

The retrofit strategy uses techniques to take advantage of old but still necessary
systems, through the inclusion of new features [12]. However, the use of this strategy
requires prior and specific knowledge of the pre-existing elements and infrastructures, in
order to perform the proper interfaces for implementation of the desired functionalities
without causing damage or accidents.

The integration of legacy systems with digital ecosystems by using retrofit and IoT
techniques is a well-cited topic in the literature. In [35], the authors propose strategies for
using retrofit to reduce energy consumption and improve the comfort of legacy building
facilities. The authors of [36] implemented a wireless sensors network (WSN) for controlling
and monitoring legacy air conditioners from retrofit devices. In [37], the author presented
solutions for automation of legacy infrastructure using retrofit strategies. Also, the authors
of [38] proposed a model based on the building energy management system (BEMS) method
and the worldwide web consortium (W3C) specifications for monitoring and controlling
energy consumption from a WSN, in the context of smart buildings, from a retrofit strategy.

Table 5 shows the retrofit works discussed above. These works presented satisfactory
results regarding the technological upgrade of pre-existing systems using retrofit strategies.
However, the proposed methods serve a pre-established number of cases and systems,
making scalability, distributed processing, or even interoperability with other applica-
tions difficult. Furthermore, the authors did not employ generic architectural models to
standardize the presented strategies in the use of larger numbers of devices, of the same
nature or not. In contrast to the aforementioned works, the present work distinguishes
itself by presenting retrofit techniques performed in a systemic way from a strategy and an
architecture developed to promote energy management in legacy building circuits.
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Table 5. Works with contributions from retrofit techniques.

Work  Year Application
Using retrofit to reduce energy consumption and improving the
[35] 2015 b
comfort of old buildings
[36] 2017 Using retrofit to enable control and air conditioner monitoring
[371 2018 Retrofit Strategies for Automation legacy infrastructure

Retrofit strategy for monitoring and control of energy consumption from a model

(38] 2021 based on the BEMS method and the W3C specifications

2.3. Middleware and Interoperability

Middlewares provide physical or logical interfaces between heterogeneous systems,
and are challenges in terms of hardware and software development for IoT [39,40]. On the
other hand, there are situations in which it is necessary to provide, in addition to physical
or logical interfaces, interaction between different systems. In these cases, it is necessary
to use methods that enable interoperability, especially in IoT applications that need to
interact regardless of the communication protocol used [41,42]. Therefore, middleware and
interoperability solutions are important allies in the integration of IoT solutions with legacy
systems, reducing the complexity of integrating new technologies with existing resources
and helping in the scalability of IoT applications.

The literature also presents work that enables technology convergence processes
through interoperability middleware solutions. The authors of [43] proposed a method by
which to realize interoperability of legacy industrial systems in the context of Industry 4.0 by
employing minor changes to existing communication media. In [44], the authors proposed
an architecture model to enable the interoperability and interconnection of devices located
on the Malaga University campus, as a proof of concept for future applications of the model
in smart city deployments. The work [45] presents a middleware solution that enables
the interfacing of devices located in intelligent office environments. In [46], the authors
deployed a smart grid model from a middleware architecture based on retrofitting legacy
meters for monitoring electrical parameters in WSNs. The same authors, in [47], contributed
a methodology to enable interoperability of legacy meters in smart grids from WSNs.

Table 6 presents the main characteristics of the above-mentioned works. These works
contribute with solutions for standardization of technological convergence processes. How-
ever, they do not propose middleware solutions for energy management that make available
physical and logical interfaces with legacy systems. Still, in the context of energy efficiency,
the works do not present resources, which enables the communication interoperability of
the proposed systems. Furthermore, the works in the literature did not conceive generic
methodologies that could be applied to new systems and scenarios, beyond those exposed
in the respective works. In this work, we proposed a generic architecture for retrofitting
legacy building circuits, based on middleware and interoperability resources, which al-
lows virtualization, communication and the insertion of IoT devices, enabling energy
management from the monitoring of electrical parameters in real time.

Table 6. Work with emphasis on middleware and interoperability solutions.

Work  Year Application

Method for system interoperability legacy industrialists in the

31 2017 context of Industry 4.0

441 2019 Model for device interoperability in a university campus

45] 2010 Middleware for device interface located intelligent office environments

[
[
[46] 2018 Model based on a middleware architecture for retrofitting legacy meters to WSNs
[47]1 2018 Methodology for Enabling Interoperability of legacy meters from WSNs
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2.4. Metamodels

Just as models are abstractions of some reality, metamodels are abstractions of models
to design new modeling languages or extend existing modeling languages [48]. They
are employed in the analysis, design, development, and integration of models for any
system. This includes the integration of legacy systems with middleware and interop-
erability interfaces [1,49]. Therefore, metamodels enable the technological transition of
pre-existing systems.

In this context, the literature exposes successful cases using the metamodel approach.
In [50], the authors proposed an IoT metamodel to connect heterogeneous objects by using
the premise of interoperability. The authors of [51] also implemented an IoT metamodel
capable of transforming a software solution written in a specific modeling language for
a Java application in order to standardize the development in a guided way. In [52],
a metamodel was proposed for device interaction in intelligent environments from a
modeling of relationships and attributes. In [4], the authors introduced a metasystem
to enable the transition of legacy electric power distribution systems to the smart grids
paradigm through the retrofit strategy. Table 7 presents the main characteristics of the
aforementioned works.

Table 7. Papers with contributions based on metamodels.

Work  Year Application
[50] 2018 Metamodel for device interoperability heterogeneous
[51] 2017 Metamodel for transforming solutions from software in a targeted manner
[52] 2016 Metamodel for device interaction in intelligent environments

Retrofit-based meta-system for transition from legacy power distribution systems

[4] 2017 to the Smart Grid paradigm

Further on, the [4] metasystem evolved into the SmartLVGrid metamodel, which
presents itself with primitives and protocols for using middleware solutions and interoper-
ability resources through the retrofit of legacy low-voltage electrical systems [5]. Because
this metamodel describes generic interfaces to be used for upgrading pre-existing systems,
it is possible to extend the applications and resources made available by it to any techno-
logical niche, including in the electric sector itself. We found no other similar approaches in
the literature to enable energy management in building environments from the individual
monitoring of each circuit in the installation. Therefore, the SmartLVGrid metamodel is
used as a basis to perform retrofits of electrical circuits enabling the remote monitoring of
electrical parameters.

3. SmartLVGrid

Smart low-voltage grids (SmartLVGrid) is a metamodel for modeling legacy low-
voltage circuits in power distribution systems based on the smart grid paradigm. It
consists of a protocol stack and uses a retrofit strategy to add control, monitoring, and
communication capabilities to pre-existing systems. This model is structured both at the
local level, close to the final consumer, and at the central level, in the supervisory centers of
the energy utilities. The geographical separation of these levels requires the use of local area
network interfaces (LANSs) or metropolitan area network interfaces (MANSs) to establish
logical links between the legacy systems and the operation and command centers. Figure 1
illustrates the protocol stack established in the SmartLVGrid model.
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Figure 1. The protocol stack of the SmartLVGrid metamodel. The protocol stack of the SmartLVGrid
metamodel [1].

As per Figure 1, the SmartLVGrid metamodel is composed of the interoperability
and middleware layers. According to the metamodel, the retrofit is performed under the
legacy structure at interface points called points of interface (PoI). The middleware layer
interfaces with the legacy layer through the coupling and interaction node (CIN), allowing
the execution of microprocesses called domain retrofitting functions (DRFs), one of the
classes of operational primitives (OPs) of the metamodel.

The OPs are processes previously performed by field operators in the legacy elec-
trical system that are now executed through service nodes (SNs) and CIN nodes, logical
units responsible for the interfaces between the interoperability /middleware and middle-
ware/legacy layers, respectively. The computational support functions (CSFs) implement
processing and storage services in the middleware layer, and the interdomain support
functions (ISFs) perform the communication processes in the same layer.

3.1. A Middleware Layer

The middleware layer is at the lowest level of the stack of the metamodel. Physically,
this layer is implemented by means of retrofit devices, composed of embedded hardware,
sensors, and actuators compatible with the DRFs to be executed. This layer is also called
automation and communication unit (ACU), and its representation is illustrated in Figure 1.
The representative model of the ACU consists of three ports: In/Out, Get, and Run. The
communication processes and services of the ISFs are executed through the In/Out port.
The Get port implements data collection by means of measurement and sensing DRFs.
Finally, the Run port acts with control DRFs over the legacy layer. It should be noted that
the ACU'’s processing and data storage routines are implemented through CSFs, as well as
other computational support functions.

3.2. The Interoperability Layer

The interoperability layer is responsible for guaranteeing a set of rules and hierarchies
and represents the infrastructure to implement network communication with the ACUs,
aiming to interact remotely with these devices and use their functionalities. This layer clas-
sifies each ACU according to its position in the SmartLVGrid metamodel hierarchy. ACUs
that supervise and monitor other ACUs and optionally run DRFs are called coordinators.
ACUs that run DRFs on top of the legacy layer and are supervised by coordinators are
called operators. In cases of expansion of the operating power system, which implies more
computational capacity for the coordinator ACU, the metamodel provides subcoordinators
for each cluster of operator ACUs. In this way, the subcoordinators will be associated with
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a single ACU coordinator that will communicate with the supervision and control center to
pass on information about the system. It is important to note that each ACU has its own
processing unit, enabling the distributed processing of the system from the retrofit of each
legacy asset.

The supervision and control center retains all control and monitoring of the system
from the communication with all coordinators present in the power grid. Other functions
are the administration of the consumer units, distribution busbars and transformer stations.
It is up to the technical-administrative staff of the supervision center to delimit the DRFs
and autonomous decision-making to be performed by the retrofit devices.

4. Methodology for Implementing the Proposed System

SmartLVGrid was initially designed to be used in conjunction with low-voltage con-
sumer units and their interfaces with the legacy electrical system [5]. However, in [1],
the authors presented a model based on the retrofit of a legacy building lighting circuit,
showing the feasibility of adapting SmartLVGrid for smart buildings. In this sense, the
present work contributes by extending the SmartLVGrid model and using the retrofit
method for a new load profile: the legacy electrical circuits of a power distribution board.
The term legacy, in this case, refers to the fact that, previously, the circuits did not have
any element that provided the execution of interoperability, control, or remote monitoring
functionalities. Figure 2 illustrates the retrofit strategy developed.

Figure 2. Proposed retrofit strategy for energy monitoring.

As illustrated, the strategy proposed in this work promotes the insertion of retrofit
modules (1) consisting of specific hardware and firmware for network communication,
processing, data storage, and for the acquisition of the electrical parameters of each circuit
of the switchboard. It should be noted that the retrofit modules (1) are calibrated with a
precision current and voltage source before being installed in the circuits. These modules
(1) have been inserted next to the circuit breakers (2) of the power distribution board in
order to
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e standardize the development and installation of retrofit modules;

¢ reduce visual impacts by confining the solution within the switch cabinet;
¢ standardize the development and installation of retrofit modules; and

*  preserve as much as possible the existing electrical installation

In this way, the disposal or removal of any element present in the circuit (cables,
walls, socket points, circuit breakers, among others) was avoided. After retrofitting the
circuits of the switchboard, it was possible to supervise them from a supervision and
control center. In this work, the supervisory center is located in a cloud for accessing the
monitored parameters from anywhere. In addition, the supervisory center was designed to
provide energy management resources in real time, enabling the analysis of active demand
consumed and other electrical quantities, such as voltages, currents, and power factor. It
is noteworthy that the literature has not presented works with this approach, involving
the extension and use of metamodels and retrofit techniques for this purpose. The tests
of the proposal and the validation of the results were obtained from the integration of the
retrofit modules with the supervisory center, through which it was possible to monitor,
individually, each circuit and its respective electrical parameters and events.

The following section presents the modeling performed to extend the SmartLVGrid
model and the conception of our proposal. Based on this modeling, it is possible to under-
stand in more detail the hardware and software elements conceived for the development of
our proposal and the adaptations made to the SmartLVGrid metamodel for the insertion of
monitoring resources in the legacy building circuits of a distribution board.

4.1. SmartLVGrid Metamodel Adapted to the Proposed System

To insert a new load profile into the context of the SmartLVGrid metamodel, we
extended the middleware and interoperability layers of this metamodel, creating the
necessary interfaces to the switchboard circuits. These adaptations were made starting with
the specifications of the operational primitives and the composition of the ACUs to be used.
This also involves the methods for integrating the physical interfaces of the ACUs with the
legacy switchboard circuits, detailed in the next section. In addition, the supervisory and
control center was implemented by using cloud services with dashboards and databases,
premises not explored by the original metamodel. Figure 3 illustrates the interfaces adapted
from the SmartLVGrid metamodel for the proposal of this paper, along with the integration
with the supervision and control center (SCC).

In this paper, retrofit modules for measuring electrical parameters act as ACU oper-
ators in the system. They were called ACU-BREAKERS, because they are located next to
the circuit breakers of the legacy circuits. In addition, the proposed implementation relies
on a router to communicate and interface with the cloud services responsible for housing
the dashboard and database. Therefore, in the proposed architecture, this device has been
classified as an ACU coordinator, and is referred to as ACU-ROUTER.

Figure 3 illustrates the interoperability between the ACUs over the local area network
(LAN) interface. The ACU-ROUTER, in the role of coordinator, communicates with the
supervisory and control center (SCC), which, in this paper, is located in the cloud next to
the other computational services for visualizations and data processing in the context of
energy efficiency and power quality. With the ACUs interconnected, each circuit can be
virtualized by the SCC in order to individually organize the parameters obtained by each
circuit. It should be noted that the interface point is located between the circuit breaker
and the electrical circuit, from where the Get port extracts the measurement data up to
the CIN. In this case, the service nodes act as the interface of the available communication
media with the LAN network, providing the data and access paths for this (TCP ports, IP
addresses, SSID, among others). The following subsection presents a brief description of
the architecture of each ACU developed in our proposal.
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Figure 3. SmartLVGrid architecture adapted to the proposed model.

4.1.1. ACU-BREAKER Modeling

Figure 4 exposes the architecture diagram of the ACU-BREAKER and its interfaces.
As mentioned, this ACU is responsible for collecting the electrical parameters of the legacy
circuit associated with its respective breaker. The measurement of the electrical parameters,
according to the SmartLVGrid metamodel, is characterized as a DRF executed by the
Get port of this ACU. Similarly, the communication of this ACU is done through the
In/Out port, responsible for executing the ISFs of requests and responses to the ACU
coordinator (ACU-ROUTER). Moreover, the ACU-BREAKER has CSFs associated with
data storage, device configuration, and network connection management. To perform
the abovementioned operational primitives, it should be noted that this ACU has digital
processing resources for acquisition and adjustments of the measured electrical parameters,
communication, transduction, and conditioning of electrical signals, and also protection
against possible overcurrent and overvoltage surges.

Figure 4. ACU-BREAKER architecture diagram.
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4.1.2. ACU-ROUTER Modeling

Similarly, Figure 5 illustrates the ACU-ROUTER architecture diagram and its respec-
tive interfaces. Although this ACU does not have interfaces with the legacy layer and does
not have Get and Run ports for DRF execution, it plays an important role in the proposed
system. Through it, it is possible to interface the ACU operators, responsible for measuring
the electrical parameters, with the supervisory control center (SCC), which is located in
the cloud. The ACU-ROUTER/SCC interface is also performed through In/Out ports,
by means of ISFs associated with request and response messages. Regarding CSF, the
ACU-ROUTER performs the connection management of the ACU operators on the data
network used.

Figure 5. ACU-ROUTER architecture diagram.

5. Materials and Specifications for System Implementation

This section presents the strategies used to develop the middleware and interop-
erability layers and the supervision and control center (SCC) of the monitoring system
in this paper. To this end, the software features, message exchange patterns, and hard-
ware and firmware specifications of the retrofit modules will be defined, according to the
specifications of our proposal.

5.1. Definition of the System Interoperability Layer

Because our proposal is based on retrofit, we reused existing network and infrastruc-
ture resources in the scenario used for the case study. In this sense, to provide network
interconnection for the ACUs, we reused the wi-fi network infrastructure available in the
vicinity of the power distribution board and jointly employed the MQTT communication
protocol. From this, we established the premises to enable interoperability with the ACU
devices in our proposal.

We used the Mosquitto MQTT broker running on a cloud-resident virtual machine
(DigitalOcean Droplet), along with the applications and software services of the SCC.
The packets were transmitted in the system with QoS 0, to reduce the latency of the data
exchange between the ACUs and the broker [53,54]. The virtual machine’s IP address and
TCP port 1883 were used to provide access to the MQTT broker. This address and port
was passed to the firmware for networking the ACUs via messages presented later in the
paper. Thus, the service nodes (SNs) recommended in the metamodel were implemented
with the establishment of the network connection of the ACUs to the MQTT broker. It is
important to mention that in order to have interoperability between the ACU-ROUTER and
ACU-BREAKER middleware, the In/Out ports and the SNs must use the same standard
and communication network.

To enable interoperability between ACUs via Wi-Fi LAN and the MQTT protocol,
we used request and response messages in JSON format, implemented via the cJSON
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library [55]. Because the SCC is hosted in the cloud, its connection to the ACU-ROUTER
takes place via the Internet. The MQTT messages were transmitted in the SCC/ACUs
direction and the responses transmitted in the opposite direction. In this context, messages
were used for electrical parameter requests, updating device network registration, and
updating device calibration parameters. Figure 6 illustrates the process adopted to enable
the communication of the ACUs with the cloud-hosted SCC, according to the proposed
architecture, for a request to send electrical parameters as follows:

e The SCC, via the Internet, establishes communication with the Wi-Fi LAN interface of
the ACU-ROUTER and ACU-BREAKER (1);

*  The configuration of the service nodes (SNs) of the ACU-ROUTER and ACU-BREAKER
is performed (2);

*  The request message (3) is transmitted;

* By means of MQTT messages, the ISFs for synchronizing communication and sending
data from the ACUs (4) are executed.

Figure 6. Communication process of the proposed system.

5.2. Implementation of ACU-BREAKER Middleware

The conception of the ACU-BREAKER was based on the development of a hardware
device, and respective firmware, to monitor the electrical parameters in real time of a
three-phase circuit located in a power distribution board, being possible to use it to monitor
two-phase or single-phase circuits. To monitor the switchboard circuits through the retrofit
strategy recommended in the proposed system architecture, we designed a panel containing
six ACUs-BREAKER, power supplies, and battery backup for continuous operation in cases
of power interruption. In this way; it is possible to detect power interruption or voltage
and current variation events in cases of re-energization of the monitored circuits.

Each ACU panel was installed next to six circuit breakers in the switchboard. Thus,
for 48 circuits present in the electrical panel, eight panels containing six ACUs each were
developed. The ACU-BREAKER was designed with reduced dimensions in order to
facilitate its installation. Figure 7 illustrates the strategy described above for installing the
ACU-BREAKER and the hardware features present in its design. On the other hand, the
main hardware components of the ACU-BREAKER are detailed in Figure 8, including the
connections to the support board that distributes the power supplies and battery backup to
each ACU.
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Figure 7. Strategy for using ACU-BREAKER.

Figure 8. Main hardware components of the ACU-BREAKER.

5.2.1. SoC for Processing and Communication

As mentioned, the ACU-BREAKER has a system-on-a-chip (SoC), with processing
and communication capabilities, through which we develop the DRFs, CSFs, and ISFs of
the ACU. To do this, we used the ESP32-DOWD-V3 SoC present in the ESP32-WROOM-
32E module from the manufacturer Espressif [56,57]. Through the ESP32 module, it was
possible to take advantage of wi-fi communication resources and the MQTT protocol to
implement the ISFs through request and response messages, and network connection
management (one of the CSFs). In addition, the ESP32 module has serial communication
peripherals used to debug the developed firmware and to communicate with the electrical
signal acquisition circuitry. The ESP32-WROOM-32E module has a 4 MB flash memory,
which was used to implement the CSF for storing the calibration settings parameters and
for storing the communication network configuration parameters.

5.2.2. Circuit for Acquisition and Digitalization of Electrical Parameters

To ensure the reliability of the obtained electrical parameters, even in nonsinusoidal
conditions, we chose to use an integrated circuit dedicated to the acquisition and digiti-
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zation of the electrical parameters by means of the mean value technique. To do this, we
employed the ADE7758 integrated circuit and the discrete components associated with it.
This integrated circuit communicates with the processing unit by means of a serial interface
and its function is to receive the electrical parameters of voltage and current previously
conditioned, and then to digitize and process these parameters. The use of this integrated
circuit in the ACU-BREAKER is detailed in Figure 8. Through this process, we obtained the
parameters of effective voltage and current, network frequency and active, reactive and
apparent power. The active, reactive and apparent power and power factor parameters
were computed by the ESP32 module by using the active, reactive, and apparent power
parameters obtained. All the technical aspects, equations, and diagrams used to support
the use of the ADE7758 as commented above are detailed in its datasheet [58].

Through the integrated circuit ADE7758, we performed a procedure for calibration of
the parameters obtained through gain and offset adjustments as described in its datasheet,
ensuring the accuracy of the acquired values. To perform the calibration, we used a
precision source, PP5400.3 from the manufacturer MTE [59], to provide known parameters
of voltage and current. In this way, it was possible to adjust the gain and offset parameters
based on the values provided by the precision source and the measurement performed by
the ADE7758. We developed a routine in the firmware of the ACU-BREAKER to receive,
adjust, and update the parameters in the internal registers of the ADE7758, as specified in
its datasheet. It is important to note that each ACU-BREAKER was calibrated individually,
as each was affected differently by the tolerance or precision of the components used for
signal conditioning or transduction. In the tests performed, it was possible to obtain a
measurement with about 1% error through the calibration adjustments. Figure 9 illustrates
the ACU-BREAKER on a bench to be calibrated by using the precision source used.

Figure 9. Benchtop ACU-BREAKER for calibration with precision source.

5.2.3. Protections and Connections for Measuring Voltage and Current

As illustrated in Figures 7 and 8, the ACU-BREAKER has discrete components respon-
sible for the protection and conditioning of the electrical signals to be introduced in the
integrated circuit ADE7758 and, which were previously obtained through the connections
of acquisition of the electrical voltages and the connections with the current transformers
with the differential channels of the mentioned circuit. It is important to note that these
connections physically implement the Get port of this ACU.

The internal ADCs of the ADE7758 rely on pre-conditioned voltage and current signals
with low values, being 500 mV the maximum peak value of the signals inserted into the
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three voltage and current channels [58]. Consequently, in order to be able to perform
maximum 500 V peak readings from the mains, we set up the voltage transduction circuit
by using a resistive divider to create the 500 mV /500 V ratio on the voltage channels.
Considering the neutral as the reference, we use a resistive divider of 1 (MQ) and 1 (k(2)
after the voltage connector. In this way we establish the conditioning of the voltage
channels. It is important to note that the resistors used are accurate to 1%, to maximize the
effectiveness of the system, and operate with powers of up to 250 mW, avoiding overheating
due to the high electrical potentials to which they can be subjected.

The current transformers were sized to meet the circuit breaker currents. To meet
this demand, we chose to use the noninvasive current transformers of the AcuCT mV
series, produced by the manufacturer Accuenergy [60]. Regardless of the nominal current
of these transformers, their full-scale outputs are 333 mV. However, to use them with the
differential current channels of the ADE7758, it was necessary to make adjustments to the
signals obtained from these transducers. The maximum full scale of the current channels is
500 mV peak, but it can be adjusted to 250 mV or 125 mV peak. In this sense, we used a
resistive divider to adjust the current transformer output to 250 mV peak in each circuit
and set the current channel full scale to the same value, changing the internal gain registers
of the ADE7758.

Because the electrical voltage transduction is performed in a non-isolated manner, to
ensure protection against surges, overcurrents and overvoltages, the input protections of the
ACU-BREAKER voltage channels are composed of gas discharge tubes (GDTs), polymeric
positive temperature coefficient (PPTC) resettable fuses and Zener-type diodes. To ensure
the protection of the ESP-WROOM-32E module in serial communication with the ADE7758,
we used a digital isolator to separate the main’s neutral from the module’s digital reference.
Thus, it was necessary to use two power supplies in the panel of the designed ACUs, one
for power supply to the ADE7758 and one for power supply to the ESP-WROOM-32E and
its peripherals. On the other hand, the current channels rely on galvanic isolation and the
noninvasive measurement of current transformers. Therefore, only Zener-type diodes have
been used to prevent overdrafts from damaging the ACU-BREAKER current channels.

5.2.4. Electrical Schematic and Layout

The electrical schematic and layout of the ACU-BREAKER were developed in Al-
tium 21 software. Figure 10 illustrates a three-dimensional (3D) perspective of the layout
designed for the ACU-BREAKER.

Figure 10. Perspective of the ACU-BREAKER from above (a) and below (b) in 3D.

5.2.5. ACUs Panel

As mentioned earlier, a panel containing six ACU-BREAKERs, two 5 V power sup-
plies, one for the ESP32-WROOM-32E module’s digital circuit and one for the ADE7758's
acquisition circuit, and a battery backup were designed. Additionally, a power distribution
board was designed and positioned on the panel to share power from the power supplies
with the ACUs via connectors. The board was designed to be positioned internally to the
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distribution board and installed on six of the circuits present. For a total of 48 circuits,
eight panels were developed. Figure 11 illustrates the ACU panel previously developed in
Inventor software.

Figure 11. Perspective of the elaborate ACU panel.

5.3. The ACU-ROUTER Middleware

An ACU does not necessarily have to be a hardware device to be developed based on
the premises of the SmartLVGrid metamodel. Because it is based on a retrofit strategy, the
technological adaptation process can occur through existing devices with the necessary in-
terfaces to enable interoperability with other system applications. In this sense, to interface
with the other ACU operators (e.g., ACU-BREAKER) and enable system communication,
the ACU-ROUTER (coordinator) was selected to be a wi-fi router in the vicinity of the
electrical panel used to implement the proof of concept of this article. The router used was
the AP 310 model from Intelbras manufacturer [61].

The wi-fi router does not implement control or monitoring functionality on the electri-
cal circuits or any host system. Therefore, as an ACU, it does not perform DRFs on the host
system. However, through it, you can perform message exchanges and communication
synchronization with other ACU operators. Thus, through its In/Out port, implemented
through its wireless communication transceivers, it was possible to perform ISFs in the
system. In addition, this device counts on computational resources for connection manage-
ment and network configuration, which characterizes its CSFs. For future implementations
based on the SmartLVGrid metamodel, it is important to emphasize that the desired op-
erational primitives (DRFs, CSFs and ISFs) depend on the application of ACUs in future
systems. Thus, if a market device allows for a non-abrupt technological transition and
meets the needs for interfaces to existing/developed systems, it can be used as an ACU.
However, for customized solutions, like the ACU-BREAKER, it is necessary to develop the
hardware resources and the respective firmware to enable the interaction with other ACUs
and the legacy layer, preserving it as much as possible.

5.4. Implementation of the Supervision and Control Center

The supervision and control center was implemented by means of software services
and applications, including databases and dashboards, located in a virtual cloud machine
on the DigitalOcean [62] provider. Through the SCC, it was possible to view the update of
monitored electrical parameters in real time and to register ACUs in order to virtualize the
energy monitoring of each circuit in the switchboard.

To develop the screens and dashboards we used the Angular framework in version
10, an open source platform for Web application development [63]. On the other hand,
Python language version 3.9 was used to develop software services to transport data to
the developed Web application and support the management of other services, such as
data storage and device registration. The websocket protocol was used to enable real-time
communication between the MQTT broker and the Web application, because through it, it



Energies 2022, 15, 9234

55

18 of 31

is possible to send requests and receive event-driven responses without the need to consult
a server to update the interface [64].

In order to enable the storage of the monitored data in real time, we used the MongoDB
database. On the other hand, the event history and device registration were stored in the
PostgreSQL database for organization according to data type. Figure 12 illustrates the
architecture of the SCC described in this section and its integration with the devices in
our proposal.

Figure 12. Structure of the supervision and control center.

5.5. Proposal Evaluation Scenario

Our retrofit proposal for monitoring electrical circuits in smart buildings was evaluated
in the dental polyclinic of the State University of Amazonas, located in the Cachoeirinha
neighborhood, in Manaus. The demands contracted by the distributor are 115 kW during
peak hours, from 08:00 pm to 10:59 pm, and 160 kW during off peak hours during the rest
of the day. The peak and off-peak tariff schedules for each energy distributor in Brazil can
be consulted on the website of the National Agency for Electrical Energy, ANEEL, under
“Tariffs and Economic-Financial Information” [65]. Currently, in the case of the polyclinic
in question, the electric power distributor is Amazonas Energia.

The polyclinic has an electrical power distribution board, a switchboard, that operates
with a nominal voltage of phase-neutral 127 V5, voltage to which the ACU-BREAKERs
were calibrated on the bench. The board in question has 48 circuits and all were monitored
by each ACU individually. Each ACU-BREAKER was identified according to the circuit
enumeration of the board. The Wi-Fi network configuration parameters, containing the
IP address of the virtual machine and the TCP port for MQTT communication, along
with the identification of the ACUs, were passed on and stored in the ACUs after the
bench calibration procedure. After this, it was possible to assemble the panels with the
ACU-BREAKERs, power supplies, batteries, backing plates, and the necessary cabling
for installation.

Each ACU-BREAKER was connected to its respective circuit via voltage connectors and
current transformers. The panel, in turn, was positioned on the inside of the switchboard.
Figure 13 illustrates the ACU panel installed in that scenario. Then, illustrating the retrofit
of the switchboard circuits, Figure 14 exposes the ACU-BREAKER connections that interface
with the legacy layer of the system. Once powered up, the ACUs, preconfigured with
network parameters, began communicating with the MQTT broker running on the virtual
machine hosting the SCC applications in the cloud.
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Figure 13. Panel with ACUs installed in the switchboard.

Figure 14. Retrofitting the electrical circuit with ACU-BREAKER connections.
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6. Results

In this section, the results obtained from the implementation and performance eval-
uation of our monitoring proposal for the legacy electric power distribution board will
be presented. Initially, the service nodes (SNs) were established by connecting the ACUs
to the supervision and control center (SCC) through pre-registered network data. From
this, it was possible to evaluate the execution of the operational primitives (DRFs, ISFs,
and CSFs) established for the ACU-BREAKER and the ACU-ROUTER, which validates the
adaptation of the SmartLVGrid metamodel and the retrofit strategy used. To present the
energy management capabilities made available by the proposal, we developed software
interfaces that record and expose events and electrical parameters obtained in real time.

6.1. Validation of CSFs

CSFs have been implemented to manage network services and store network configu-
ration data. To illustrate the execution of this operational primitive, Figure 15 exposes some
of the logs from the CSF routines implemented in the ACU-BREAKER, obtained by debug-
ging through the universal asynchronous receiver/transmitter (UART) serial interface. In
a dual form, these logs also represent the establishment of the network connection made
through the LAN interface to the ACU-ROUTER, which in turn establishes communication
with the MQTT broker through the Internet.

Figure 15. Logs regarding the CSFs implemented in ACU-BREAKER.

6.2. Validation of ISFs and DRF Monitoring of Electrical Parameters

The message exchange process established through the ISFs made it possible to send
requests and receive responses between the ACU-BREAKER and the supervision and
control center (SCC). This was accomplished via encapsulated packets in JSON format,
transmitted via the MQTT protocol with QoS 0. To validate this operational primitive, we
captured the sending and receiving data logs from the communication service implemented
in Python language in the SCC. From this, it was possible to configure the ACUs, calibrate
them, and request the measured electrical parameters of each circuit, characterizing the
DREF performed by the ACU-BREAKER. Figure 16 illustrates the logs of the responses of
the electrical parameter requests made to the ACU-BREAKER connected to the different
circuits of the legacy power distribution board.

Figure 16. Logs of receiving parameters from the switchboard circuits.
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It can be seen in the “datetime” field that the electrical parameters were collected
at practically the same timestamp, which characterizes the synchronism of the proposed
real-time system. In circuit 35, the measured voltages are far below the nominal voltage
(127 Vys), indicating an undervoltage event. Note that the voltages of phases A and B of
the other circuits are below the nominal voltages, but within the 5% of variation allowed
according to the resolution of quality of electric power supply established by ANEEL [66].

6.3. SCC Interfaces

The proposed SCC has the premise of enabling real-time energy management with
resources for analysis of power quality and energy efficiency, which is one of the contribu-
tions of this work. Its access was accomplished by accrediting users through a login and
security key after accessing the address and TCP port of the cloud virtual machine where
the application was installed. With the software services in operation, it was necessary to
develop interfaces that indicated changes in the power factor, energy demand, monitored
electrical quantities and quality of service parameters such as overvoltage and overcur-
rent [67]. The electrical parameters provide subsidies for the analysis of energy quality,
which ensure the reliability of the electrical energy supply service also in low-voltage
consumer units [68]. Thus, the importance of this monitoring is justified.

Figure 17 illustrates the interface developed to identify the ACUs in operation asso-
ciated with each circuit in the frame, including a dashboard to view the instantaneous
electrical quantities per phase, the power factor and demand factor, the installed power of
the circuit, energy consumption and events related to power quality and energy efficiency.
In the “Device Information” field, the unique identification of the ACU in the network (ID)
is noted. The consumer unit is also informed, along with the circuit ID (Circuit 32), the
installed power and the firmware version of the ACU. There is an indicator as to whether
the ACU is connected or not. The field that exposes the occurred events presents the time
(timestamp) of occurrence and which event occurred, the value and the percentage of
variation of the parameter in relation to the nominal conditions. In Figure 17, the ACU of
this circuit has identified consecutive overcurrent events.

Figure 17. Operational interface for monitoring the circuits via ACUs.

In the dashboard, the cards signal in red the nonconformities with the observed
parameters. The demand factor, for example, which represents the ratio of active power
measured by the installed power, is below 50%. This value was the threshold set for
this metric for analyzing the usage of each circuit in the facility. We established with the
building’s engineering team that below 50%, the circuit would be underutilized; hence, the
definition of this threshold, for this case.

Similarly, Figure 18 exposes the information resulting from the consumer unit, based
on the parameters monitored by the ACUs. In the “Consumer Unit Information” field, one
can see the consumer unit identification (1780), the consumer unit, and the values of the
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demands contracted by the utility at peak (115 kW) and off-peak (160 kW) hours. In the
dashboard on the side it is possible to view the last registered values of the power factor,
active, apparent and reactive power, and energy consumption. According to module 8 of
the Brazilian normative resolution ANEEL n° 956/2021, a power factor of the installation
below 0.92 results in fines in the energy bill, and this is the threshold for this ratio [66]. In
Figures 17 and 18, respectively, it is possible to observe the power factor card of circuit 32
and the installation in red, as they are below the previously defined threshold. In addition,
Figure 18 exposes alerts that identify events of exceeding the demand contracted by the
utility in off-peak hours, thus events signaling the reduction of the facility’s power factor
below 0.92.

Figure 18. Operational interface for consumer unit analysis.

By using the SCC, it is also possible to observe the time series collected from the ACUs.
Figures 19 and 20 expose the active power (a) and the power factor (b) of circuit 47 of the
facility and the consumer unit, respectively. Circuit 47 supplies a refrigeration compressor
in the installation. In these figures, phases A, B, and C are represented by the curves in
blue, red, and green, respectively. The time graphics display up to two monitored electrical
quantities per phase or the graphics of the three phases of a single parameter. It should be
noted that the viewing history can be selected through the time gap icon and that below the
graph the instantaneous values of the quantities are displayed as the cursor is positioned
on the screen. In Figures 19 and 20, the visualization period is from 1-2 August 2022.

To visualize the demand and the power factor of the consumer unit with respect to the
contract previously established with the utility from the monitored board, we developed
differentiated interfaces for analyzing the demand and the power factor. During the same
period from 1-2 August 2022, Figures 21 and 22 illustrate the three-phase energy demand
and power factor of the installation, respectively. In Figure 21, the three-phase power
resulting from the active power of each phase of the consumer unit is observed. As estab-
lished in the Brazilian normative resolution ANEEL no. 1000/2021, the measured demand
must be computed from the average of the three-phase active power every 15 min [69].
Thus, we show in Figure 21 a bar graph to illustrate the demand measured every 15 min
of monitoring. We insert the dotted orange curve to represent the demand contracted by
the utility at peak and off-peak times. At times when the bar graphs are red, it shows the
excess of contracted demand. Otherwise, the graph remains blue. Below the graph, as we
position the cursor on the screen, the instantaneous parameters of the graph are shown. On
the other hand, Figure 22 shows the installation’s power factor, including the limit line that
establishes the minimum power factor (0.92).
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Figure 19. Active power (a) and power factor (b) in each phase (A, B, and C) of circuit 47.

Figure 20. Active power (a) and power factor (b) in each phase (A, B, and C) of the consumer unit.

Figure 21. Graph for analyzing the demand of the consumer unit.
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Figure 22. Graph for analyzing the power factor of the consumer unit.

6.4. Case Study with Proposed System

In Brazil, the consumer units can be classified according to the tariff group, accord-
ing to the contracting options defined by the National Agency of Electric Energy in the
Brazilian normative resolution ANEEL n° 1000/2021 [69]. Consumer units of group A
are usually medium and high-voltage consumers (industrial, shopping malls, buildings),
while consumer units of group B are low-voltage consumers (houses, apartments) [70,71].
Although group B consumer units are charged only for energy consumption, group A
consumer units are said to be binomial, and can be charged both for energy consumption
and for an energy demand previously contracted with the energy provider [72]. In addition,
if the average demand of the 15 min is higher than the contracted demand, the consumer
unit will pay a fine for exceeding the demand.

The dental polyclinic of the State University of Amazonas fits in group A and has a
contracted off peak demand of 160 kW and peak demand of 115 kW since its inauguration.
Currently, the university usually receives monthly increases in its energy bill as a result
of excessive energy consumption and excess demand. Subsequently, we identified that
since the inauguration, some equipment has been installed in the polyclinic, which has
led to increased energy demand. An example of this is circuit 32, which represents the
circuit of a compressed air compressor that serves all floors of the facility. Through the
ACU-BREAKER responsible for monitoring this circuit, we identified that it is responsible
for raising the demand by about 42 kW, approximately 14 kW per phase, as illustrated in
Figure 23. In this figure, phases A, B, and C are represented, respectively, by the curves in
blue, red, and green.

From our proposal, we identify between May and June 2022 contracted demand
exceedances, as shown in Figure 24. It can be observed that at times when the active power
is reduced in Figure 23, the demand of the installation is reduced in Figure 24. This way, it
can be inferred that circuit 32 is one of the circuits responsible for exceeding the contracted
demand in the dental polyclinic facility. Because this circuit supplies an essential load for
the activities in the facility, regarding the clinical care of patients, the demand control or
equipment replacement are infeasible alternatives at the present moment. In this case, it will
be necessary to renegotiate the contracted energy demand, because the initial contracted
demand is still being exceeded due to the growth of the polyclinic over the years and the
use of energy-intensive equipment. In this way, it is expected that, even with the increase
in the contracted demand from the energy concessionaire, the excess fines for exceeding
the contracted demand will be reduced, and, with this, the monthly bill. In other words,
with the measurements taken from the retrofit strategy implemented in our proposal, it is
possible to monitor the energy demand and define actions for the rational use of electricity.
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Figure 23. Curve of active powers per phase in circuit 32 of the installation.

Figure 24. Demand curve for the installation between May and June 2022.

6.5. Discussion

Based on the tests and analysis to validate the retrofit functions and operational
primitives of the measurement modules, the conformity of the results with respect to the
proposed architecture was noted. Thus, it can be inferred that there was success in adapting
the SmartLVGrid metamodel to enable the monitoring interfaces of the electrical circuits
of a legacy building installation. It is noteworthy that both ACUs enabled the insertion of
remote monitoring resources in a network of devices from the retrofit performed, especially
the ACU-BREAKER, which in its operation domain enabled the obtainment of the electrical
parameters of each circuit in the grid. Another important validation was the exchange of
messages between the supervisory center (SCC) and each ACU-BREAKER, as established
in the premises of the interoperability layer.

The parameters monitored by our proposal are of utmost importance for power quality
and energy-efficiency studies, because they enable the implementation of energy audit
processes to optimize the use of electric energy and reduce costs to the final consumer. In
this context, the final consumer can audit and mitigate energy consumption and power
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quality in a sectored way, analyzing the contribution of each circuit to the increase in
energy demand or change in energy quality parameters. With this, the consumer can study
the feasibility of contractual changes in energy demand, make changes to the facilities or
reduce the use of installed equipment, if possible. Thus, the use of stationary measurement
of circuits as proposed in this work is justified. Examples of this were presented in the
verification of excess demand and the low power factor of the installation’s circuits, as
well as of the consumer unit itself. According to the case study shown, the demand of
the installation is higher than the contracted demand, suggesting the readjustment of the
demand contracted with the concessionaire. It is important to mention that our proposal
can be applied to mitigate similar problems in electrical circuits present in large industries
and other building facilities, helping managers of these sectors in decision making that lead
to significant reductions in energy demand and adequacy of energy quality parameters.

The retrofit strategy used made it possible to take advantage of the entire legacy
infrastructure, from the available data network to the electrical materials present in the
facility. Despite being a gradual and not-abrupt technological process, the proposed strategy
added new resources for building energy management. Considering the deployment
of clusters from the proposed architecture, our strategy enables the scalability of the
monitoring system as well as the distributed processing of electrical parameters.

The cost of the retrofit carried out in relation to the costs of existing solutions on the
market for monitoring building electrical circuits was also analyzed. Initially, before the
proposal presented in this work, the maintenance team of the dental polyclinic carried out
initial quotations to evaluate the possibility of acquiring devices for monitoring electrical
parameters. This survey was conducted through regional and national distributors. At the
best quote obtained, each monitoring device was budgeted at about $213.41. In addition,
most solutions on the market would not be customized to the needs of the building
maintenance team or would take advantage of part of the pre-existing infrastructure in the
installation, requiring more resources to operate in the desired way. However, each ACU-
BREAKER has a unit production cost of $41.79, not counting the solution development cost
(hardware and firmware) and SCC costs. It is known that for large quantities, the cost of
the ACU-BREAKER tends to be reduced. Even so, our solution, adapted to the customer’s
needs, exceeded almost 80% of the cost of the market solution quoted in the region and in
Brazil by the maintenance team itself.

The studies found in the literature do not address the use of metamodels based on the
retrofit strategy to enable energy management. In addition, most of these studies present
specific solutions for pre-established cases, without the use of architectural models that
enable the use of legacy infrastructure, in a scalable manner, in order to perform energy
monitoring. Furthermore, many of them do not address the reuse of legacy resources.
However, the system proposed in this paper distinguishes itself by presenting a method,
based on the SmartLVGrid metamodel, dedicated to energy management from the retrofit
of legacy low-voltage electrical circuits of a distribution board. More than that, the proposal
presents a cloud-based supervisory center, ensuring security and access to data regardless
of location, with dashboard capabilities for viewing the history of electrical parameters
and events associated with power quality and energy efficiency. Thus, this approach fills a
gap observed in the state of the art and technique for energy monitoring, in a systemic and
hierarchically well-defined way.

7. Conclusions

In this work, the SmartLVGrid metamodel was used to enable energy management
through the monitoring of electrical parameters in real time from the retrofit of the circuits
of a legacy switchboard. To do this, an architecture based on the adaptation of the physical
and logical interfaces of the original metamodel was proposed so that this new load profile,
the circuits of a building installation, could receive new technological functionalities making
the most of the pre-existing elements. To validate the strategy presented, it was necessary to
develop the hardware and respective firmware of a retrofit module for monitoring electrical
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quantities, called ACU-BREAKER. This device was assigned operational primitives (DRFs,
CSFs, and ISFs), based on the SmartLVGrid metamodel, to execute its functionalities. In
order to enable the interconnection of each ACU-BREAKER in a wireless data network, a
wi-fi router was used as the system hub, called ACU-ROUTER in the proposed architecture.
The ACU-BREAKER and the ACU-ROUTER implement, respectively, the role of operator
and coordinator of the proposal. In addition, a cloud-based supervisory system (SCC)
was developed to store the monitored parameters and make them available in interactive
dashboards for quality and energy efficiency analysis. The monitored parameters were
the reactive, active and apparent powers, the power factor, the current and the effective
voltage in the three phases of each circuit of the board. Based on the results obtained, it
was verified that the proposal enables energy management through a transparent process
of technological transition, allowing the maximum use of the available infrastructure of the
pre-existing legacy circuits. The proposed architecture is customizable to the installation’s
needs, because the retrofit can be applied according to the physical and logical interfaces
available. In addition, the system’s middleware and interoperability layers allow for
systemic development and enable distributed processing and scalability for cases of energy
monitoring expansion. It is emphasized that, through the results presented, it is possible
to mitigate possible excess demand, the reduction of the power factor, and the conformity
of the electrical parameters of the installation from the individual analysis of each circuit.
In this way, a first step is taken to implement an energy audit process. For future work,
we suggest the integration of the proposal of this work with monitoring systems in smart
grids and the implementation of clusters based on the proposed architecture, including
the analysis of the harmonics present in the system and the evaluation of the performance
of the SCC hosted in the cloud with the increase of monitored data. We also suggest the
integration and evaluation of our proposal with new dynamic energy markets, involving
the apportionment of energy through other alternative energy sources. In addition, with the
data collected, it is suggested to label and treat them to predict the demand for energy and
other electrical quantities to control the demand of the installation by using electrical drive
devices for this purpose. It is also suggested that an economic analysis of the consumer
unit through the proposed system be performed.
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Abbreviations

The following abbreviations are used in this manuscript:

ACU Automation and communication unit
ANEEL Ageéncia Nacional de Energia Elétrica
BEMS Building energy management system
CIN Coupling and interaction nodes
CSFs Computational support functions
DRFs Domain retrofitting functions

GDT Gas discharge tubes

GPIO General-purpose input-output

IoT Internet of Things

ISFs Interdomain support functions

JSON JavaScript object notation

LAN Local area network

MAN Metropolitan area network

MQTT Message queue telemetry transport
NB-loT Narrowband IoT

OPs Operational primitives

Pol Points of interface

PTC Positive temperature coefficient

QoS Quality of service

rms Root mean square

SmartLVGrid = Smart Low Voltage Grids

SN Service node

SoC System-on-a-chip

SQL Structured query language

TCP Transmission control protocol

W Watts

W3C World Wide Web Consortium

WSN Wireless sensor network
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2.2 ARTIGO 02: A DEMAND FORECASTING STRATEGY BASED ON A RETROFIT
ARCHITECTURE FOR REMOTE MONITORING OF LEGACY BUILDING CIRCUITS

2.2.1 Resumo

A previsdo de demanda de energia € crucial para planejar e otimizar o uso de recursos
energéticos em instalagdes prediais. No entanto, integrar solucdes digitais e técnicas de aprendi-
zagem em edificios legados apresenta desafios significativos devido aos recursos limitados ou
desatualizacdes, dificultando a andlise preditiva nesses edificios e seus circuitos. Para preencher
essa lacuna, este artigo propde uma estratégia inovadora de previsdao de demanda usando uma
arquitetura de retrofit AloT baseada no metamodelo SmartLVGrid. Essa arquitetura permite
0 monitoramento remoto dos circuitos prediais legados, facilitando a coleta, processamento
e armazenamento de dados na nuvem. Usamos varios algoritmos de aprendizado, incluindo
regressao linear, regressor de vetor de suporte, regressor de floresta aleatdria, regressor XGBoost
e redes neurais de memoria de curto prazo (LSTM), para prever a demanda de energia 15
minutos a frente, identificando possiveis ultrapassagens de demanda contratada de acordo com
os regulamentos brasileiros. Apds a otimizacao bayesiana, a rede neural LSTM superou outros
modelos para a maioria dos conjuntos de dados selecionados e detectou 32 de 38 ultrapassagens
de demanda no conjunto de teste. XGBoost e floresta aleatdria seguiram com bons desempenhos,
detectando 30 ultrapassagens de demanda. No geral, nossa solucio otimiza o uso de energia e mi-
tiga com eficiéncia possiveis ultrapassagens de demanda contratada em instala¢des prediais. Isso
foi obtido por meio de uma abordagem sistematizada para atualizar as instalacdes pré-existentes,

promovendo efici€éncia energética e a sustentabilidade.
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Abstract: Energy demand forecasting is crucial for planning and optimizing the use of energy resources
in building facilities. However, integrating digital solutions and learning techniques into legacy
buildings presents significant challenges due to limited or outdated resources, hampering predictive
analytics in these buildings and their circuits. To fill this gap, this article proposes an innovative demand
forecasting strategy using an AIoT retrofit architecture based on the SmartLVGrid metamodel. This
architecture allows remote monitoring of legacy building circuits, facilitating the collection, processing
and storage of data in the cloud. We use several learning algorithms, including linear regression,
support vector regressor, random forest regressor, XGBoost regressor, and long short-term memory
(LSTM) neural network, to predict energy demand 15 min ahead, identifying potential overruns of
contracted demand in accordance with Brazilian regulations. After Bayesian optimization, the LSTM
neural network outperformed other models for most of the selected datasets and detected 32 out of
38 demand overruns on the test set. XGBoost and random forest followed closely, detecting 30 demand
overruns. Overall, our cost-effective solution optimizes energy usage and efficiently mitigates potential
demand exceedances in building installations. This is achieved through a step-by-step approach to
upgrading existing aging facilities, which promotes energy efficiency and sustainability.

Keywords: demand forecast; retrofit; SmartLVGrid; AloT; machine learning; real-time energy
monitoring; energy efficiency; sustainability; smart buildings

1. Introduction

Digital paradigms, including internet of things (IoT), and smart buildings and cities,
are enabling the efficient use of resources essential for daily activities, such as electricity and
water. In addition, they help in better decision making regarding the management of these
resources, promoting scalability, flexibility, and dynamism characterized by the so-called
data-driven approach [1,2]. However, the digital transformation of legacy systems still
presents challenges such as a lack of support and updates, incompatibilities, and insufficient
resources to interact with current systems. Alternatively, updating these systems can occur
through a process of gradual and less costly technological transformation compared to the
complete replacement of legacy systems [3-5]. Thus, using strategies that promote the
digital transformation of legacy infrastructures can be a viable alternative for acquiring
data and information for data-driven management of legacy systems.

Despite maintaining a significant portion of its legacy resources, the electricity sector is
essential for the development of numerous socioeconomic activities. This can be observed by
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the correlation between the increase in energy demand and the modernization of society [6,7].
Energy demand is a fundamental parameter for issues such as sustainability and energy
efficiency, as it subsidizes the dimensioning of energy resources to meet society’s needs.
However, most legacy systems do not have resources for monitoring or forecasting demand
in real time, making it impossible to take actions to reduce or optimize energy demand.
Additionally, the lack of these resources makes it impossible to forecast exceedances of the
contracted demand of companies and industries with energy concessionaires, which may
result in fines or increases in the energy tariff of building installations. Thus, the use of digital
solutions to monitor and forecast energy demand represents an opportunity to upgrade and
optimize legacy resources.

Artificial intelligence of things (AIoT) can enable the management of electricity in
terms of decentralized remote monitoring and computational resources for demand fore-
casting or energy consumption prediction [8,9]. Nevertheless, the literature lacks demand
forecasting strategies based on energy parameters of legacy systems, which in many cases
require interoperability resources and real-time monitoring. Without these, accessing the
accurate demand profile of existing facilities and their circuits becomes a challenge for
forecasting tasks using statistical methods or learning models.

In this context, retrofitting can be a strategy to update existing systems with digital solu-
tions, preserving their resources and infrastructure [10,11]. However, to perform retrofitting
systematically, allowing flexibility, scalability, and standardized integration with legacy
systems, a reference model with well-defined protocols and interfaces is required. The
SmartLVGrid metamodel enables the digital convergence of electrical systems to the smart
grids paradigm [3,12]. In the literature, this metamodel has been used to achieve smart
building convergence in legacy buildings to promote energy efficiency through resources
for managing energy demand and electrical parameters in building installations [4,5].

However, there is a gap in the state of the art regarding the use of statistical techniques
and artificial intelligence to predict energy demand in legacy building circuits. In this sense,
we propose a legacy circuit retrofitting architecture based on a reference model to monitor
electrical circuits and generate a monitoring database that can be used to implement energy
demand forecast models for the installation and its circuits. This allows for a systematic and
non-abrupt strategy for modernizing existing resources, allowing demand management
and forecasting in the operations of building facilities. Furthermore, this proposal may
enable the implementation of the strategy in other cases and systems.

In this article, we proposed a demand forecasting strategy in legacy building systems
based on the retrofitting of these facilities. In our proposal, we presented a retrofit archi-
tecture to integrate hardware devices into a building power distribution panel capable of
collecting and transmitting real-time data to the cloud. These data were further processed
using supervised learning techniques to predict the energy demand of both the facility
and its circuits. We used the SmartLVGrid metamodel at the physical and architectural
levels as a basis to retrofit the legacy installation, ensuring the necessary interfaces and
interoperability between monitoring devices and the cloud application created for data
storage and processing.

With the data acquired by the proposed monitoring system, we conducted an ex-
ploratory analysis of the consumption and demand data from the installation and its
circuits to mitigate the potential exceedance of the contracted demand in the legacy build-
ing installation of this study, following the regulatory standards for energy supply and
distribution in Brazil, where the proposal was validated. Consequently, we performed
short-term demand forecasting for the next 15 min. As learning models, we employed the
random forest regressor (RFR), support vector regression (SVR), XGBoost regressor (XGBR),
and a long short-term memory (LSTM)-based neural network architecture. Additionally,
we used the performance results of the linear regression (LR) model as a baseline for eval-
uating and comparing the performance metrics (root mean squared error—RMSE, mean
absolute error—MAE, and R-squared score—R?) obtained for the mentioned models.

Therefore, we highlight the following contributions of this work:
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(1) Developing an AloT solution for energy demand forecasting in legacy buildings and
their circuits based on a retrofit strategy;

(2) Implementing and comparing the performance of demand forecasting models in
legacy electrical circuits using different learning models;

(3) Implementing a new real-time monitoring system for energy demand in legacy electri-
cal circuits based on the SmartLVGrid metamodel;

(4) Proposing a systematic method for creating databases through the monitoring of
pre-existing circuits;

(5) Developing an alternative for detecting exceedances of the contracted demand with
energy utility companies in legacy building installations using learning models.

To present our proposal, we divide the paper as follows: Section 2 provides a survey
of the state of the art related to the topic. In Section 3, we highlight the research gaps in the
literature concerning the theme of this work. Section 4 provides the theoretical framework
of the SmartLVGrid metamodel. Section 5 presents our proposal for energy monitoring
based on retrofitting low-voltage legacy circuits of a power distribution panel. In Section 6,
we define our strategy and methodology to enable demand forecasting in the building
installation and its legacy circuits. Section 7 presents the obtained results. In Section 8, we
discuss the results, followed by the conclusions and proposals for future work in Section 9.

2. Related Work

The forecasting of energy demand is constantly researched in the literature, as well
as the prediction of energy consumption. Among the approaches used in this context,
statistical methods, machine learning, or deep learning models can be mentioned, employed
based on pre-established databases. The most commonly used statistical methods are based
on autoregressive techniques, with the most common ones being autoregressive integrated
moving average (ARIMA) and seasonal ARIMA (SARIMA) methods. In [13], the SARIMA
method was used by the authors to predict energy consumption in Poland on a quarterly,
monthly, and weekly scale, using data from 2015 to 2021. In [14], the authors used the
ARIMA method to estimate energy demand in Brazil from 2021 to 2025 and evaluated the
predictability of the model using real data from the period 2014 to 2015. The authors of [15]
also employed the SARIMA method to forecast short-term energy consumption for the
Brazilian industrial sector. These statistical methods have also been used in the literature
to make predictions using time series by rearranging the data present in the datasets to
enable the forecasting of future energy demand based on past demand values. In the
works [16,17], the authors used the sliding window method and autoregressive models to
enable predictions of short-term future demands.

Although statistical methods have shown significant results in time series forecasting,
they are well-suited when the dataset exhibits well-defined seasonality and trend patterns.
When the time series exhibits more complex and even nonlinear patterns, machine learning
methods can provide better results compared to statistical methods [18]. In [19], the authors
proposed models for predicting electricity consumption in Slovakia using artificial neural
networks. The authors of [20] used the support vector regression (SVR) and generalized
regression neural network (GRNN) models to predict energy consumption in Indonesia.
In the work [21], the authors applied random forest regression (RFR) and SVR to predict
medium-term electricity demand using a Canadian database. In [22], the authors applied two
ensemble learning methods, the XGBoost regressor and RFR, to forecast demand for the next
day during the pandemic period. In the work [23], the authors employed machine learning
methods, including linear regression (LR), multivariate polynomial regression, SVR, gradient
boosting regressor (GBR), RFR, and K-neighbors regressor, to predict energy demand in New
South Wales, Australia. In [24], the authors developed a clustering-based method for electricity
prediction that was evaluated using a dataset with data from 105 substations. In the work [25],
the authors presented a summary of the works developed in the IEEE demand forecasting
competition, which included anomalous consumption data from a metropolitan region during
the COVID-19 pandemic period. Various data preprocessing and demand prediction methods
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using machine learning were presented. In an analysis of the cited works, it is mentioned
that in cases of large data volume, nonlinear relationships among the characteristics present
in the database, the presence of noise, and non-stationary behaviors, deep neural networks
can be an alternative to machine learning. However, it is emphasized that deep networks
require more computational resources and are more complex compared to supervised machine
learning models. It is also mentioned that authors commonly use recurrent neural networks in
this scenario, especially LSTM networks, combined with sliding window techniques [26-31].
Tables 1 and 2 summarize the previously presented works.

Table 1. Studies employing statistical methods for demand and energy consumption prediction.

Work Year Application Methods or Models Dataset Origin
[13] 2021 Prediction of electricity consumption in Poland on a XGBoost, GRNN, SARIMA, Cirenl
) quarterly, monthly, and semi-annual scale. ETS, NNETAR P
[14] 2022 Forecast of Brazilian monthly energy demand. RS, ES, ARIMA ONS Brazil
; Prediction of monthly consumption of industrial HW, SARIMA, TBATS, DLM, .
[15] 2022 electricity in the Brazilian energy system. NNAR, MLP Central Bank of Brazil
Out-of-sample, monthly, weekly, and hourly forecast
el 2022 for Nord Pool electricity demand. AR, FAR, FARX Nord Pool
[17] 2022 Short-term S‘i;f::‘; tO:n}:e(:-g;l}é cnersy demand of SLEN, ARIMA, SVR, LSTM Arpae, ARPA Lombardia
The abbreviations are presented in the list of abbreviations.
Table 2. Machine and deep learning studies for demand and energy consumption prediction.
Work Year Application Methods or Models Dataset Origin
[19] 2022 Developnéf;‘;:lfs ?fglr;f;atiii"recasnng Gray Models, ANN Damas (SEPS)
Electricity prediction in Bali Island, located in East Java Province, domestic
(201 2022 Indonesia, using electricity and weather data. SVR, GRNN generators, ERA5-ECMWEF
1] 2021 Use of machine and deep learning models for LSTM, SVR, NARX, RFR IESO (Canada), Gov. of Canada
medium-term prediction in Canada.
Forecast for the next day of energy demand in
[22] 2022 Germany in COVID-19 pandernic period. Ensemble-based models OPSD
Prediction of energy demand in LR, MPR, SVR, ENR, GBR, DTR, .
(23] 2022 New South Wales, Australia. RFR, KNNR AEMO, Gov. of Australia
) Energy prediction based on cluster . .
[24] 2022 optimization method. Greedy clustering Ausgrid
Demand prediction works in a metropolitan region
[25] 2022 using machine learning, statistical methods, and Ensemble methods, AR, LR BluWave-ai
hybrid models.
. . ARIMA, LSTM, Prophet, . .
[26] 2022 Short-term energy forecast using learning models. Hybrid models Elia grid
Long-term demand prediction in Florida with MRM, CNN variants, EIA (U S,), FCC,
(271 2020 regression models RFR, LSTM Census Bureau (U.S.),
g : . Bureau of Labor Statistics (U.S.)
[28] 2022 Prediction of e“‘fg%ﬁ"ﬁ:mﬁﬁ;’“ in Spain using LSTM variants Spain Electricity Consumption
Use of LSTM and convolutional networks for . UCI repository, local
(29] 2021 short-term demand forecasting in France and Korea. LSTM and CNN variants Korean dataset
[30] 20p3 ~ Forecasting energy consumption demand using TFT, LSTM variants, TCN, TET London DataStore
which outperformed other deep learning models.
Energy consumption forecasting on smart grids with .
[31] 2022 N-BEATS, outperforming other deep LST]\%SEC{S_I]{S%X?SWMS’ London DataStore

learning methods.

The abbreviations are presented in the list of abbreviations.
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The previously cited works contribute to the state of the art in demand forecasting and
energy consumption. However, these works focus on predictions and forecasts relevant
to energy companies, regional, or national contexts, rather than being directly related to
building and industrial facilities. Additionally, the datasets employed were not produced
through wireless sensor networks (WSNs) developed and configured by the authors, which
would allow for the investigation of specific details or aspects, such as the use of predictive
models for energy demand control, for example.

Thus, we sought literature that investigates the building context and applications of
demand forecasting specifically tailored to building installations. In [32], demand and
generation prediction of renewable energy sources, specifically photovoltaic and wind en-
ergy, were conducted in five smart residences using LSTM networks as prediction models,
with approximately 11 months of collected data. In [33], an energy management strategy
based on demand classification and prediction was presented. In addition to predicting the
demand for a commercial building in Singapore, the authors developed neural network
algorithms for decision making regarding energy excess treatment, application of photo-
voltaic energy, and energy storage conditions in the battery bank. In [34], the authors used
a FFANN model for demand forecasting in the next 24 h for residential, educational, and
mixed-use buildings. The authors of [35] predicted energy consumption in a food company
based on data obtained from the factory’s energy management system using the SVR and
multilayer perceptron (MLP) methods. The work in [36] presents a study to assist managers
and technicians with long-term energy predictions for a building at Teesside University
(UK) using different machine learning techniques such as SVR and neural networks. In [37],
the authors performed demand prediction using LSTM networks applied to the context of
smart buildings. In [38], energy consumption data from smart meters installed in building
substations, which recorded the consumption of the entire building at 15-mi intervals,
were utilized. Based on this data, the authors analyzed the integration of methods for
consumption forecasting to improve energy efficiency in building installations. Table 3
presents the works cited in this paragraph on demand forecasting and energy consumption
in building and industrial infrastructures.

Table 3. Research on forecasting demand and consumption of electricity in building and industrial

infrastructures.
Work Year Application Methods or Models Dataset Origin
[32] 2021 Energy prediction and fqr rfanewable sources m LSTM variants HUE dataset (Havard dataverse)
smart buildings.
Prediction and classification of energy demand for MLP, RNN, LSTM, GRU,
(331 2020 decision making in smart buildings. EM-GMM, BGM, K-means Own data
[34] 2019 Use of the FFANN model to f(?re'cast demand for the FEANN Buildings of Finland
next 24 h of buildings.
[35] 2023 Energy prediction in a fOOd company using machine MLP and SVR variants Own data, KEPCO, KMA
learning models.
[36] 2021 Long-term energy prediction PR, SVR, ANN Own data
in a university building.
[37] 2022 Prediction of energy demand in smart buildings. ARIMA, LSTM Mendeley data
38] 2022 Forecasting of energy consumption in smart RFR, XGBoost CNN, TCN Own data

buildings with different drift detection methods.

The abbreviations are presented in the list of abbreviations.

Additionally, we selected some works that incorporate the concept of AloT for electri-
cal energy analysis. In [39], the authors developed a hardware device to monitor human
presence and energy consumption. By using a decision tree model on a cloud-stored
database, they determined energy waste in residential consumer units. Using the same
decision tree algorithm, the authors of [40] created an energy control system based on
hardware with wifi communication, relays, current sensors, and cloud storage. In the
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work [41], neural networks were employed to predict energy consumption based on data
collected from sensors in a residential system. The authors utilized these predictions to
turn off one or more devices to reduce monthly energy consumption. The authors of [42]
addressed the challenges of thermal management in electric vehicle batteries and proposed
an AloT-based preventive diagnostic system to improve safe driving, efficient maintenance,
and product lifecycle management, aiming to optimize efficiency and battery life. Table 4
summarizes the selected AloT works.

Table 4. Literature works on AloT implementation in energy applications.

Work Year Application Methods or Models Dataset Origin
[39] 2022 IoT solution to Control'consumpnon and energy Decision tree Own data
waste in homes.
[40] 2021 AJoT solution for controlling energy consumption in Decision tree Own data

smart homes.

Use of neural networks to control energy
[41] 2022 consumption in homes from wireless ANN Own data
sensor networks (WSNs).

AloT system for preventive diagnosis of thermal

(4] 2023 challenges in electric vehicle batteries.

ANN Own data

The abbreviations are presented in the list of abbreviations.

3. Research Gap

Previous studies on demand and energy consumption forecasting have shown the
potential to enhance energy efficiency in building and industrial infrastructures within
their respective contexts. However, there are several gaps in the current state of the art
regarding demand or energy consumption forecasting in building facilities:

*  Most existing studies rely on databases generated by third parties, without real-time
AloT solutions specifically designed to construct databases that capture patterns or
characteristics of not only the overall electrical installation but also individual circuits
and sectors within it. This presents an opportunity to leverage demand or consumption
forecasting algorithms to optimize operations for specific installations of interest;

¢ The studies have not explored the forecasting of energy consumption and demand at
the circuit level within building installations, which would enable individual analysis
of high-consumption loads within the facility. This limitation stems from the lack of
digital monitoring solutions that can collect individual demand data from building
circuits, in addition to capturing the overall energy demand of the facility;

*  The existing works do not provide AloT solutions that enable the forecasting or detec-
tion of demand exceedances in legacy building systems, hindering digital convergence
in pre-existing environments. A sustainable technological alternative is needed to
promote energy efficiency in these installations. Retrofit strategies could be employed
to introduce computational resources and update legacy infrastructures, leveraging
existing resources to extract consumption and energy demand data for specific studies
focused on legacy installations;

¢ The studies do not utilize retrofit strategies or metamodels with generic architectures
and protocol stacks to enable systematic data collection through digital solutions
that incorporate control, monitoring, distributed processing, and communication
capabilities within data networks. Such approaches would benefit various cases and
applications in the domain of energy forecasting.

Therefore, this study proposes to address these gaps by developing and implementing
digital solutions using retrofit techniques and the SmartLVGrid metamodel for accurate
demand forecasting in legacy installations.
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4. SmartLVGrid

A smart low-voltage grid, or SmartLVGrid, is a metamodel that enables the techno-
logical convergence of legacy power distribution systems into the smart grid paradigm
through retrofit strategies and systems engineering concepts. Its proposal involves adding
electronic and computational resources for the control and monitoring of legacy systems
using supervisory systems hosted on a local network or even in the cloud. These function-
alities are described in the platform as operational primitives (OPs), which were previously
performed by field operators and later, with the implementation of the metamodel, taken
over by the added technological resources. This metamodel consists of protocol stacks
described in two layers: middleware and interoperability, as shown in Figure 1.

Figure 1. The SmartLVGrid stack [4].

As illustrated in Figure 1, the retrofitting of the existing infrastructure (legacy layer) is
carried out through points of interface (Pols) that interact with the middleware layer through
the coupling and interaction node (CIN). Through this interface, the metamodel defines one
of its operational primitives (OPs) called the domain retrofitting function (DRF), which is
responsible for performing control and monitoring functions in the legacy layer. On the other
hand, the service nodes (SNs) enable the middleware layer to interact with the interoperability
layer through predefined communication standards and protocols. Thus, communication
processes are performed by the interdomain support functions (ISFs). It should be noted that
in the middleware layer, computational support functions (CSFs) are implemented to provide
processing and storage services. In the following paragraphs and Sections 4.1 and 4.2, more
details about the middleware and interoperability layers will be provided.

4.1. Middleware Layer

The middleware layer, which interacts directly with the legacy layer, is implemented
through retrofitting solutions. Typically, these solutions encompass hardware devices
with embedded processing, including sensor and actuator elements compatible with the
DREFs to be executed. Alternatively, the middleware layer is described as the automation
and communication unit (ACU), as shown in Figure 1. The ACU has “In/Out” ports
that perform the communication processes, “Get” and “Run”, responsible for monitoring
functionalities and controlling the legacy system, respectively. It should be noted that the
CSFs are executed through the storage and processing resources of the ACU.
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4.2. Interoperability Layer

The interoperability layer enables communication between ACUs through a data
network. Additionally, the communication protocols and device hierarchies modeled
through the SmartLVGrid metamodel are established within the interoperability layer.
In this context, the ACUs that supervise and collect data from other ACUs, as well as
execute DRFs when applicable, are hierarchically referred to as ACU coordinators. On
the other hand, the supervised ACUs that execute DRFs in the legacy layer are called
ACU operators. In cases of expanding the legacy system, it may be necessary to increase
the computational capacity of the ACU coordinator. In the metamodel, it is possible to
define sub-coordinators for each cluster of ACU operators, as described in [4]. Thus,
sub-coordinators are associated with a single ACU coordinator, which transfers system
information to and from the supervisory center. It is important to emphasize that, due to
the local processing capability of each ACU, actions and directives can be performed by the
ACU itself at the local level, enabling distributed and decentralized processing.

5. Methodology for Implementing the Energy Monitoring System

In previous works, we utilized wifi network infrastructures for communication with
the supervisory centers [3-5]. However, in this study, we explore a different alternative for
communication between our monitoring proposal and the supervisory center, as well as for
the physical interface of the retrofit modules with the legacy building circuits, considering
the specific characteristics of the monitored consumer unit. Specifically, we focus on a
wifi router assembly factory where the main power distribution panel does not have
sufficient space for installing retrofit modules, as shown in [5]. In this scenario, it is a
factory regulation not to use wifi networks within its facilities to reduce interference issues
and IP node conflicts during router testing and validation processes. Therefore, we employ
a different retrofit approach compared to previous state-of-the-art works in terms of both
physical and logical interfaces. Figure 2 illustrates the proposed retrofit strategy for the
power distribution panel in the industry under study. Subsequently, Figure 3 presents an
architecture diagram of the devices used in accordance with the SmartLVGrid metamodel,
highlighting the adopted communication standards as well as the physical and logical
interfaces of our monitoring proposal.

Figure 2. Retrofit strategy.

As depicted in Figure 2, the new strategy involves the integration of more compact
retrofit modules compared to the modules developed in [5]. Still referred to as ACU-
BREAKERSs, in this study, the retrofit modules were powered by connecting them to
the breakers of the main power distribution panel, enabling the monitoring of electrical
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parameters for each circuit. This made individual circuit monitoring more independent
as we utilized non-shared power sources for each retrofit module. On the other hand, the
proposed approach included an ACU coordinator with the capability to: (i) communicate
with the ACU-BREAKERs and the supervisory and control center (SCC); (ii) provide
backup power through batteries; and (iii) monitor the electrical parameters of the main
panel breaker. This device was named ACU-MAIN. It is worth noting that the current
measurement of both ACU-BREAKER and ACU-MAIN were performed non-invasively
using current transformers, and voltage was measured through direct contact with the
terminals of the breaker and the main power bus.

In this study, we employed a technological update approach based on the protocol
stack of the SmartLVGrid metamodel, and we conceptualized the physical and logical
interfaces of the devices as presented in Figure 3. In this figure, we illustrate the peer-
to-peer communication between the operator modules, the ACU-BREAKERs, and the
coordinator module, ACU-MAIN, to forward the acquired data from the monitored circuits
and the main panel breaker to a local server. It is important to highlight that the monitoring
of the main breaker was not performed in [5], a feature that enables the detection of power
supply interruptions in other monitored circuits of the installation.

Figure 3. Proposed SmartLVGrid architecture.

To avoid the use of a wifi infrastructure network for communication between the ACU
operators and the ACU-MAIN in the mentioned industrial environment, we employed
the ESP-NOW ad hoc low-level network, which enables multi-hop, lightweight, secure,
self-organized wireless communication. ESP-NOW operates in the 2.4 GHz ISM band
and can coexist with other standards such as Bluetooth and wifi [43,44]. Studies have
shown that ESP-NOW exhibits lower latency and longer range compared to Bluetooth
and wifi [45]. Additionally, unlike Bluetooth low energy, ESP-NOW does not limit the
number of connected nodes, which justified its selection as the network protocol for
peer-to-peer interconnection [46]. On the other hand, the logical interface between the
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ACU-MAIN and the supervisory center was established through wired communication
with a local server, adopting the MQTT protocol over ethernet. This allowed us to establish
a connection with the cloud-hosted SCC. In summary, some benefits related to the hardware
and communication architecture of our retrofit proposal include:

¢  Utilization of a peer-to-peer communication architecture among the wireless nodes,
ACU-BREAKER (operator), and ACU-MAIN (coordinator), through the ESP-NOW ad
hoc network, enabling communication flexibility and reducing the number of IP nodes;

*  Adaptation of the monitoring modules, ACU-BREAKER, with a specific and compact
design for installation in small-sized power distribution panels, reducing the space
requirements and visual clutter of the industrial distribution panel;

¢ Development of retrofit modules that allow easy and intuitive installation in power dis-
tribution panels, thanks to the agile coupling features and reduced physical dimensions;

. Preservation of the existing resources in the installation, including the infrastructure,
breakers, cables, connections, and the main distribution panel itself.

In this way, we enable the monitoring of the electrical panel and the forwarding of
data to a local server for subsequent transmission to the cloud, where the supervisory and
control center (SCC) is located. In the SCC, we built a dataset containing the obtained data
from each circuit to be used in the demand prediction algorithms. Expanding its original
proposal, the SCC now contributes not only with resources for storing and visualizing
past information but also with predictive analysis resources for each circuit of the building
installation through demand forecasting. The retrofit proposal tests were carried out by
integrating and validating the physical integration and communication of the monitoring
system with the cloud application, which receives the electrical parameters obtained from
each circuit.

Subsequently, we present the modeling of the ACUs, compatible with the assumptions
of the SmartLVGrid metamodel. The presented modeling will provide a detailed under-
standing of the conceived and developed physical and logical interfaces at the hardware
and/or software level for the retrofit modules in the energy monitoring system.

5.1. ACU-BREAKER Conception and Modeling

Figure 4 presents the improved ACU-BREAKER (operator) developed during this
work. The main differentiators of this ACU operator are its physical connection to the
legacy circuits of the power distribution panel and the use of the ESP-NOW ad hoc protocol
for communication between the ACU operators and the coordinator. As shown in the
figure, it has metallic terminations that fit into the breakers and current transformers
embedded in its structure. Therefore, the installation of the ACU-BREAKER is facilitated
by inserting and screwing the connection cables of transformers/breakers onto the metallic
terminations of the ACU-BREAKER. It is worth noting that the hardware and firmware
resources and functionalities of the ACU-BREAKER are similar to those described in [5].
Thus, this ACU provides the DRF of electrical parameter monitoring through its Get port,
performs ISFs of request and response through its In/Out port, and utilizes the ESP-NOW
protocol for communication, along with CSFs related to network connection management,
device configuration, and data storage. In terms of hardware, this device includes the
same electronic surge protection devices, voltage and current channel conditioning, and
ADE7758 for digitalization of acquired electrical parameters [47-49]. It is important to
mention that the calibration procedures for the ACU-BREAKER, as described in [5], were
maintained during the development of this work.
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Figure 4. ACU-BREAKER architecture diagram and its physical perspective after development.

5.2. ACU-MAIN Conception and Modeling

The ACU-MAIN coordinator of the proposed system has similar DRFs, ISFs, and
CSFs as the ACU-BREAKER. Additionally, it has the function of managing the network
connection and communication with the other ACUs, including storing the identification
data of the connected ACUs. Furthermore, it has an ethernet communication interface to
communicate with the local server of the factory using the MQTT protocol [50-52]. The
service nodes (SNs) of the SmartLVGrid metamodel for both the ACU-MAIN and ACU-
BREAKER are established based on the credentials used in the ESP-NOW communication
protocol, which includes the MAC address of the ESP32 used in the ACU hardware.
It should be emphasized that the In/Out ports of this ACU are implemented through
the ethernet interface for MQTT communication and the 2.4 GHz radio for ESP-NOW
communication. The voltage and current parameters are monitored through the physical
connection to the main bus and current transformers, respectively [53]. Figure 5 illustrates
the ACU-MAIN developed in this work.

Figure 5. ACU-MAIN architecture diagram and its physical perspective after development.

5.3. Definition of the System Interoperability Layer

As mentioned earlier, the interoperability of the system occurs through two forms
of communication. First, within the power distribution panel, the ACU operators com-
municate with the ACU-MAIN using the ESP-NOW wireless communication protocol.
Second, the ACU-MAIN communicates with the local server of the factory through an
ethernet interface, using the MQTT protocol with QoS 0. It should be noted that the ethernet
interface was determined according to the company’s requirements and aligns with the
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retrofit concept of the SmartLVGrid metamodel, which aims to maximize the utilization
of the existing legacy system. Consequently, the local server forwards the messages to an
MQTT broker hosted on the DigitalOcean Droplet virtual server hosting service, also with
QoS 0, where the processing of energy data takes place. It is important to mention that
the request messages for electrical parameters are transmitted in JSON format and, upon
receipt at the SCC, they are stored in a MongoDB database.

The service nodes (SNs), illustrated in Figures 4 and 5, represent the credentials that
allow the ACUs to communicate in a wireless network. In this work, the SNs are imple-
mented through the credentials that enable the communication of devices using the ESP-NOW
protocol, including the MAC address of the ESP32 in each ACU in the proposed P2P interface.

Regarding the messages in our proposal, they are implemented using JSON format for
both the interface between ACU operators and the ACU-MAIN and the interface between
the ACU-MAIN and the local server. The same message protocol is also adopted for
communication between the local server and the SCC. The messages include request and
response messages for sending the monitored electrical parameters along with timestamps,
network communication parameter changes, inclusion of new devices, and ACU-BREAKER
calibration. Figure 6 illustrates the process adopted to enable the interoperability of our
proposal in a request of electrical parameter scenario as follows:

*  The local server requests the electrical parameters from the ACU operators and the
ACU-MAIN every minute (1);

¢ The configuration of the service nodes (SNs) of the ACU-BREAKERs and the ACU-
MAIN is performed (2);

*  The request for electrical parameters is sent from the ACU-MAIN to each ACU-
BREAKER using the ESP-NOW protocol (3);

¢ Upon receiving the request, the ACU-BREAKER performs ISFs to synchronize com-
munication and transmits the requested data to the ACU-MAIN (4);

*  After collecting the information from the ACUs and the message timestamps, the local
server forwards the data to the cloud-hosted SCC (5).

Figure 6. Communication process of the proposed system.
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5.4. Installation of the ACUs

Once assembled, tested, and calibrated, the ACUs were installed and configured to
operate in the existing power distribution panel of the router factory. Each ACU was
calibrated beforehand to match the nominal currents and voltages of the breakers in the
panel, with a maximum error of 1%, using a precision three-phase source and the internal
registers of the ADE7758, the integrated circuit used in the ACUs for electrical parameter
digitalization [54,55]. The panel operates with a phase-neutral voltage of 127 V,;;s and has
22 circuits. Figure 7 illustrates the ACUs installed in the legacy power distribution panel.
As depicted, the first distribution breaker does not have an ACU-BREAKER installed, as it
was damaged during the evaluation period of the proposal.

Figure 7. ACUs installed on legacy power distribution board.

6. Proposed Demand Forecast Strategy

The literature presents applications of the SmartLVGrid metamodel used for the
management, control, and energy monitoring of power distribution systems and building
systems [3,4,12]. In [5], we presented a data-driven energy management strategy by
monitoring real-time energy demand in each circuit of a building installation based on
the aforementioned metamodel. In Brazil, where the proposed work was implemented,
medium- and high-voltage consumer units are categorized as “binomials”, being charged
based on both consumption and previously contracted energy demand from a local energy
distributor [56]. The demand is weighted every 15 min, and if it exceeds the stipulated
value in the established contract, the consumer unit is subject to fines according to the
Brazilian National Electric Energy Agency (ANEEL) in the normative resolution ANEEL
No. 1000/2021 [57]. To assist the participating managers in the conducted case study,
we also developed a visual interface with demand exceedance alarm indicators so that
managers could choose to develop demand control strategies or renegotiate the demand
contract with the energy distributor.
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Thus, we noticed that a tool for predictive analysis of energy demand could contribute
to anticipate potential exceedances and, if possible, act promptly to reduce costs associated
with consumer demand exceeding limits, also assisting in demand management. Therefore,
considering that each circuit in the legacy installation can be monitored through retrofit
modules, the forecasting of demand for the next 15 min of the installation and its circuits
could be performed at the supervision and control center (SCC), becoming an additional
data analytics functionality incorporated into audit processes to enhance energy efficiency.
Such a strategy would enable decision making for demand control or renegotiation of
demand limits with the utility company, if necessary.

In this study, after installing the ACU-MAIN and ACU-BREAKERSs in the main power
distribution panel, we let the devices operate and collect individual data from each circuit,
including the main breaker. The data were collected based on the interoperability definitions
specified earlier in Section 5.3. The collected circuit parameters are detailed in Table 5.
Subsequently, Table 6 presents the identification and load connected to each circuit, along
with the monitoring system device that supervises the respective circuits.

Table 5. Data variable description.

Data Variable Description

Monitored circuit identification.
MAC address of installed ACU.
Timestamp of samples (datetime format).
Power Factor of each circuit (%).
Active energy of each circuit (Wh).
RMS current of each circuit (A).
RMS voltage of each circuit (V).

Circuit identification
MAC address
Timestamp
Power factor
Active energy
RMS current
RMS voltage

Table 6. Circuit, load, and monitoring device description.

Circuit Identification Load Monitoring Device
Circuit 0 All Building Installation ACU-MAIN
Circuit 2 Production Line—02 ACU-BREAKER-1
Circuit 3 Production Line—03 ACU-BREAKER-2
Circuit 4 Production Line—04 ACU-BREAKER-3
Circuit 5 Reserve Circuit ACU-BREAKER-4
Circuit 6 Electrical Panel—Production ACU-BREAKER-5
Circuit 7 Reserve Circuit ACU-BREAKER-6
Circuit 8 Electrical Panel—Server 02 ACU-BREAKER-7
Circuit 9 Support Area—02 ACU-BREAKER-8
Circuit 10 Central Air Conditioning—01 ACU-BREAKER-9

Circuit 11 Support Area—03 ACU-BREAKER-10
Circuit 12 Administration ACU-BREAKER-11
Circuit 13 Central Air Conditioning—02 ACU-BREAKER-12
Circuit 14 Electrical Panel—Stock 01 ACU-BREAKER-13
Circuit 15 Support Area—01 ACU-BREAKER-14
Circuit 16 Central Air Conditioning—03 ACU-BREAKER-15
Circuit 17 Electrical Panel—Stock 02 ACU-BREAKER-16
Circuit 18 Support Area—04 ACU-BREAKER-17
Circuit 19 Electrical Panel—Server 01 ACU-BREAKER-18
Circuit 20 Reserve Circuit ACU-BREAKER-19
Circuit 21 Chamber ACU-BREAKER-20
Circuit 22 Reserve Circuit ACU-BREAKER-21

The proposed system transmits the collected data from minute to minute to the local

server and then to the cloud. Based on this, it was possible to create a database at the
SCC for conducting the study proposed in this work. The database used in this study was
generated from 15 January to 12 April 2023, and contains data from the main breaker and
21 circuits of the distribution panel that supply loads and other distribution panels within
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the building installation. Due to industrial confidentiality reasons, the obtained database
and other company data could not be published or made available to the public at the
moment, but we can make it available upon request and negotiations carried out directly
with us. For the forecasting task proposed, only the minute-to-minute active energy data
from each circuit will be used, which were subsequently processed to obtain the energy
demand. The other data are used by the industry in energy audit procedures. It is important
to mention that the building in question has a demand limit of 120 kW.

Throughout this section, we presented the exploratory analysis of the obtained data,
the preprocessing techniques used for training the learning models, and the performance
metrics for model evaluation. Hereafter, the concepts of the learning models used will be
presented, followed by the division of the training and validation datasets.

In summary, to prepare the data for use in time series forecasting, we used the sliding
window technique so that previous demand data could be used to predict future demand for
the next 15 min for circuits within the installation, following the ANEEL guidelines in [57].
These data were normalized using the min-max method. Based on the performance of other
works in the literature, we used machine learning regression techniques as learning models,
such as random forest regressor (RFR), support vector regression (SVR), and XGBoost
regressor (XGBR). Additionally, we used the linear regression (LR) method to obtain a
prediction baseline from the preprocessed data, and a recurrent neural network model,
specifically a long short-term memory (LSTM) network, as a deep learning alternative to
compare with the other obtained results.

6.1. Exploratory Data Analysis and Definition of the Circuits to Be Analyzed

Before preprocessing the obtained data, we analyzed the contribution of each circuit
to the energy consumption of the building installation. For this purpose, we performed
a Pareto analysis of the total energy consumption of the circuits in the installation from
15 January to 12 April 2023. In this analysis, the cumulative percentage consumption was
based on the ratio of the individual consumption of each circuit, monitored by the ACU
operators, to the total consumption of the installation measured by the ACU-BREAKER.
Circuit 0 represents the entire installation, which is monitored by the ACU-MAIN. The
other circuits, from 2 to 22, are monitored through the ACU-BREAKERs. The Pareto
diagram of the energy consumption of the circuits present in the installation is illustrated
in Figure 8. It should be noted that, due to damage to the ACU-BREAKER of circuit 1
during the installation process and the fact that other circuits have much lower energy
consumption compared to the rest, the total and percentage consumption of these circuits
are identified as “other circuits” in the diagram.

We noticed that circuits 13, 16, 10, 8, 6, 12, and 14 accounted for approximately 80%
of the total consumption of the installation. Since energy consumption is directly related
to energy demand, we chose to perform demand forecasting studies for these circuits
considering their contributions to the demand increase. In addition to these circuits, we
also used the demand data obtained from the ACU-MAIN. From the energy data monitored
every minute by the circuits, we extracted the 15-min energy demand for the mentioned
circuits. Table 7 presents the statistical and descriptive data for 15-min demand intervals
for the specified circuits. Here, “count” represents the number of demand values for each
circuit’s dataset. Figure 9 illustrates box plots that detail the variation in the 15-min energy
demand for these circuits.

We observed from Table 7 and Figure 9 that the average values of the 15-min demand
are directly proportional to the cumulative percent of energy in Figure 8, justifying the
selection of circuits based on Pareto analysis for the demand forecasting study. According
to Table 7, the data count is the same for all samples collected from the selected circuits.
From Table 7 and Figure 9, with the exception of circuits 6 and 8, we noticed that the largest
deviations obtained are concentrated in the upper part of the graphs. We can observe
from Table 7 that the standard deviation of the energy demand is more significant in the
demand obtained from the monitored data of the main breaker of the distribution panel
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(circuit 0). Additionally, it can be observed in Figure 9 that the graph indicates possible
demand exceedances in the installation during the data collection period in this circuit,
with values exceeding the contracted demand of 120 kW, as illustrated by the red marking
in the figure. On the other hand, the outliers in the same figure are less frequent in the
circuits of the main panel monitored by the ACU-BREAKERs. The circuits that present the
most outliers are the demand data of circuits 8 and 12. We expect that the LSTM, SVR, RFR,
and XGBR models perform better than the linear regression model in datasets with higher
variability. The preprocessing techniques applied to the 15-min demand data, which are
subsequently used in the training and testing of the learning models, will be presented next.
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Figure 8. Pareto diagram of the energy consumption of building circuits.
Table 7. Descriptive statistics of the 15-min demand data.
Statistics Circ. 0 Circ. 6 Circ. 8 Circ. 10 Circ. 12 Circ. 13 Circ. 14 Circ. 16

Count 6782 6782 6782 6782 6782 6782 6782 6782
Mean (kW) 62.18 6.27 8.86 9.13 5.90 13.92 5.27 10.90
Standard deviation (kW) 34.18 3.55 3.22 8.90 4.92 11.24 3.33 9.67
Lower value (kW) 9.25 0.54 0.09 0.11 0.66 0.46 0.45 0.11
First quartile (kW) 21.74 1.45 9.02 0.12 1.52 0.57 0.87 0.12
Median (kW) 72.35 8.57 9.79 5.49 3.76 20.14 6.51 11.11
Third quartile (kW) 89.60 8.79 10.44 19.52 9.80 24.33 8.13 22.30

Upper value (kW) 126.46 10.80 13.46 21.59 25.07 27.44 11.74 24.14
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Figure 9. 15-min demand variation of the building installation and monitored circuits, with the
contracted demand of the installation represented by a dashed red line.

6.2. Data Preprocessing

In this section, we present the methods used for data preprocessing in our study,
which include the sliding window technique and min—-max normalization. This crucial
step ensures that the data entered into the models are in a suitable and ideal format for
forecasting energy demand in the context of this work.

6.2.1. Sliding Window

The sliding window algorithm was used to generate the input data for the models by
selecting subsets of sequential samples. These subsets are called sliding windows, which
move with a predetermined temporal unit step according to each application [58]. This
technique is widely used in areas such as time series forecasting, signal processing, and
temporal data analysis. In this work, the temporal unit is defined as the energy demand
values obtained from each circuit over a 15-min period. Each sliding window, as illustrated
in Figure 10, is composed of past demand values (i.e., blue sets), which are used as input
to predict the energy demand for the next temporal unit (i.e., cubes). We determined the
optimal window size through empirical tests, where we established possible window values
and performed iterative loops using the learning models. Based on the results obtained
for each defined window, we have selected the best possible window size to predict the
demand for the selected circuits. The window size determined from the conducted tests
was 10 temporal units (samples) of 15 min of previous demands to predict the value of the
energy demand for the subsequent sample.

Figure 10. Sliding window technique.
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6.2.2. Min—-Max Normalization

The min-max data normalization method scales a dataset so that its values are within a
specified range [a, b]. This technique is commonly used to preprocess data before applying
machine learning algorithms. When applying min—-max normalization to a dataset, the
original values are transformed into new scaled values that fall within a specified range.
This transformation is performed using an adaptation of the standard linear transformation,
as shown in Equation (1). In this work, the range defined for data normalization was [0, 1].

X = Xmin

Xnorm = €]
Xmax — Xmin

6.3. Evaluation Metrics

In this section, we explain the critical metrics used to evaluate the performance of the
implemented learning models. These evaluation metrics provide quantitative information
about the performance of the models in forecasting energy demand.

6.3.1. Root Mean Squared Error—RMSE

Root mean squared error (RMSE) is a widely used metric for evaluating the perfor-
mance of regression models. This measure assesses the difference between the actual values
y; and the predicted values 7; of a dependent variable by calculating the square root of the
mean of the squared errors, as shown in Equation (2).

n

RMSE = | =} (i — i) )
i=1

By examining the equation of RMSE, it can be seen that the metric resembles the
standard deviation. Thus, the RMSE value can be interpreted as a metric that indicates the
variability in errors in relation to the actual values of the dependent variable. Therefore,
it can be considered as an indicator of the model’s accuracy, with a lower RMSE value
indicating better performance. Additionally, the RMSE metric can be used as a quantitative
measure of the prediction quality of the model for comparative analysis between regression
techniques. It is worth noting the use of the square root, the RMSE can be interpreted in
terms of the dependent variable, which helps in understanding the magnitude of errors
generated by the evaluated model [59].

6.3.2. Mean Absolute Error—MAE

Mean absolute error (MAE) is an evaluation metric that provides the average magni-
tude of the n absolute differences between the predicted values y; and the expected values
7;. This metric is expressed in the same unit as the dependent variable and, therefore,
provides a straightforward understanding and interpretation of the achieved performance,
facilitating a direct comparison between different models [60]. The mathematical expression
for MAE can be seen in Equation (3).

1 & .
MAE = — Y lyi — il ®3)
=

6.3.3. R-Squared Score—R?

The R-squared score (R?) is an evaluation metric that indicates the proportion of the
variance in the dependent/predicted variable y that is explained by the input/expected
variables. This metric takes values between 0 and 1, where 0 indicates that the model
does not explain any variability in the dependent variable, and 1 indicates that the model
explains all the variability in the dependent variable. Therefore, as the R? value increases,
the model fits the data better and explains a higher proportion of the variance in the
dependent variable. On the other hand, an R? value close to 0 indicates that the model is
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unable to explain the variation in the dependent variable [61]. This metric is expressed
in Equation (4).

Y (yi — )
RZ=1-—==M JU 4
Yl (vi —7)? @

6.4. Learning Models

In this section, we delve into the specificities of the learning models used in this work,
which include linear regression, support vector regression, random forest regression (RFR),
XGBoost regression, and LSTM-type recurrent networks.

6.4.1. Linear Regression (LR)

The linear regression (LR) method aims to establish a linear relationship between
the response variable y and the predictor variables xi,x», ..., x;, which are called the
dependent and independent variables, respectively. In the context of demand prediction,
the independent variable is the sampled data allocated in the window, while the dependent
variable is the predicted demand. The linear relationship is obtained by estimating the
parameter vector 6 and adding an additive disturbance or noise term . Thus, considering
yn as the demand at time #, and applying the sliding window, it follows that:

Yn=00+01yn_1+ 02y 2+...+ 0y +n 5)

and

n =Yn — (00 +61Yn—1+02yn—2+...+0y,_1) (6)

Considering N observations and I = 10, we have:

N
SO = Y (Yn—01Yn1—0Yn—2—...—Oy,_1)* (7)
n=Il+1
N
S@O) =Y ®)
n=I+1
or in vector form:
N Ts \2
$(0)= ) (yu—0"7n) )
n=I+1
where
6 = (60,61,...,6)" (10)
and
Jn = (Lyn—l/yan/'“/ynfl)T (11)

In this case, w = (wg, wy, . ..,w;)T is the estimated vector of § that minimizes S(8). In
general terms, the LR model performs a prediction by calculating the weighted sum of the
input data and adding a constant term. This process determines the weights and biases
of the model. In its multiple form, it involves the use of two or more predictors, i.e., more
input variables for training. It is one of the most commonly used low-complexity models
when the response variable and predictor have a strong linear correlation [62].

6.4.2. Support Vector Regression (SVR)

The SVR (support vector regression) prediction technique aims to predict output
values by determining a hyperplane that closely resembles the input data. In this algorithm,



Sustainability 2023, 15, 11161

91

20 of 37

the maximum number of instances possible is considered within a margin of €, with the
aim of determining weights and biases, that provides the generalization for the model.
To achieve this, the objective is to minimize the error J(w, wy, & ¢) given by Equation (12),
where ¢, and r’fn are the slack variables corresponding to a deviation from the € margin,
with the penalty control given by C, constrained by Equations (13)-(15).

A1 N N
I(w,wo,§,5>—2|w|2+6<2 §n+26n> (12)
n=1 n=1
yn—wan—wgge—i-én,n:1,2,...,N (13)
wan+wgfyn§e+§n,n:1,2,...,N (14)
& >0 >0n=12..,N (15)

In this way, contributions to the cost function from errors with an absolute value
less than or equal to § are set to zero. The optimizer’s objective is to estimate w and
wp in a manner that the contribution of error values greater than ¢ and smaller than &is
minimized. Thus, this algorithm is interesting for initial testing in machine learning and has
the advantage of not being affected by local minima, unlike deep neural network algorithms.
However, as the amount of data increases, this algorithm tends to lose performance when
attempting to establish a linear response [63].

6.4.3. Random Forest Regression (RFR)

In a regression tree, the determination of the root node variable and subsequent nodes
is defined by maximizing the weighted averages in the child nodes or, equivalently, by
minimizing the weighted variance 02 of subsets Yq, Ya,..., Yy, with |Yq], |Yal,...,|Yq]
elements, as shown in Equation (16).

N
g (Y1, Yo, .., V) =Y ||1;”||(72(Y,,) (16)
n=1

In the RF method, which is an algorithm based on an ensemble of decision trees,
the bootstrap aggregating strategy is applied during the model learning phase. Bootstrap
aggregating aims to construct a series of trees by randomly sampling the original data, using
only a subset m of predictors from a complete set p of predictors. These samples are then
trained independently and in parallel with each other. Finally, the values are aggregated by
calculating the average of the results obtained from each individual regression tree [64].

Thus, by averaging multiple decision trees that are subjected to high variance, the
model exhibits better generalization performance and is less prone to overfitting. The RF
technique has been widely used to solve low-complexity regression problems due to its
high performance and robustness against overfitting.

6.4.4. XGBoost Regressor (XGBR)

The XGBoost regressor algorithm is based on making predictions using regression
decision trees. The method utilizes information aggregation, random forest for tree selection
during batch training, error minimization using gradient descent, and regularization of
weights and biases. Equations (17) and (18) present the weight function and the objective
function, respectively. In these equations, g; and &; are the first- and second-order gradients
of the loss function, A and 7y represent additional regularization terms, T represents the
number of nodes, ¢ represents the tree structure, and I; is the instances of a node j. In
addition to regularization, XGBoost uses an additional shrinkage technique to prevent
overfitting by scaling the weights obtained by a factor 7, similar to a learning rate. This
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process reduces the influence of each individual tree and allows room for future trees to
improve the model.

Yier Si
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This algorithm has shown promise in various prediction scenarios, including regres-
sion and classification problems. This is due to its high scalability, as the execution time of
this algorithm can be 10 times faster than others, and it can be scaled for numerous exam-
ples in distributed configurations or with limited processing memory due to implemented
optimizations and parallel processing capabilities [65].

6.4.5. Long Short-Term Memory (LSTM)

LSTM networks are a type of recurrent neural network that feature an internal memory
cell structure as their main characteristic. Through the logistic function and multiplier
weight matrices, these gates are implemented and referred to as the input gate (i;), forget
gate (f;), and output gate (0;). There is also the vector that represents the internal state (C;)
of the LSTM cell and the candidate value (C;). The mathematical definitions of the gates,
cell state, and candidate value of the LSTM network are presented in Equations (19)—(23),
including the respective biases b¢, b;, b ¢, and bo.

fr = c(Welhe_1,x: ] + by) 19)
it = c(Wilhy_1,x: ] + by) (20)
or = 0(Wolhi—1,xt ]+ bo) (21)
Ci=froCq+itoCy (22)
C+= tanh(W[hy_1, x¢ | + bc) (23)

The application of these networks is interesting for problems involving sequential
data and time series, such as the electrical demand curve, for example, [66]. While a fully
connected neural network has separate parameters for each input feature, recurrent neural
networks share the same weights across different time steps, establishing a strong temporal
relationship among the data.

6.5. Definition of Training and Test Sets

The demand data for the selected circuits consists of 6782 observations, as shown in
Table 7. To proceed, we normalized the dataset using the min-max technique, we divided it
into training and test subsets in order to implement and validate the learning models. Thus,
80% of the observations were used for training, and 20% were used for testing. Figure 11
illustrates the separated training and test sets for each circuit selected for the proposed
demand prediction study in this work. After dividing the data, we applied the sliding
window technique to prepare the input and output data subsets for training and testing
the learning models. As mentioned earlier, the sliding window size adopted was 10 past
values to predict a demand value for the next 15 min.
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Figure 11. Training and test sets of the selected circuits.

The training of the models was carried out on a local server from the data collected in
the SCC, where we evaluated the predictive models before transferring them back to the
cloud server. The server has a 2.3 GHz Intel Core i7-11800H processor, 16 GB RAM, 4 GB
GPU, and 500 GB SSD.

6.6. Software Libraries and Optimization of Learning Models

The experiments with the learning models were conducted on the Jupyter Lab platform of
the Anaconda distribution using the Python language. We utilized several libraries, including
TensorFlow, Pandas, NumPy, Matplotlib, Seaborn, XGBoost, and Scikit-learn. To enhance
the performance of the learning models on the established dataset, we used the Optuna
framework for Bayesian optimization of the hyperparameters of the machine learning models
and fine-tuning of the LSTM model. Bayesian optimization techniques have proven to be
more efficient in finding better hyperparameters and searching for the best parameters to be
used in neural networks and their variants. This is because they make use of prior information
about the behavior of the objective function to guide the search [67,68]. Optuna is an easy-
to-configure Bayesian optimization framework that is suitable for hyperparameter tuning
and determining the best parameters for supervised learning models for a given training and
testing set. With a define-by-run API, the search space for the best parameters is dynamically
defined by Optuna during the runtime of an objective function instantiated to test the desired
model under pre-established conditions [69]. Thus, Optuna was used to train and evaluate
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the models for each dataset of the selected circuits. The parameter K in the table represents
the number of trees used in the RFR and XGBR models.

6.7. Definition of Parameters and Architectures of Learning Models

To accomplish the task of energy demand forecasting in our proposal, we conducted
an investigation into various machine learning models to determine the most suitable
one(s) for predicting the energy demand of the researched circuits, which exhibit distinct
demand patterns. The architecture for evaluating the learning models is illustrated in
Figure 12a, and the implemented LSTM model architecture is represented in Figure 12b.
After conducting tests using the Optuna framework to evaluate the models, we were able to
select the best parameters for each learning model. The tests were conducted individually
for each model, considering the normalized datasets of circuits 0, 6, 8, 10, 12, 13, 14, and 16.
We conducted 500 trials per study in an effort to find the optimal parameters that enabled
the models to effectively capture the temporal demand characteristics. The mean squared
error (MSE) metric was used as the evaluation criterion for training all the machine learning
models. Table 8 showcases some of the hyperparameters discovered for the machine
learning models after the Bayesian optimization process, considering the selected datasets.

Figure 12. Learning models (a) and LSTM recurrent neural network model (b) used to evaluate
demand forecasting.

Table 8. Hyperparameters used in machine learning models after optimization process.

Dataset SVR RFR XGBR
Circ. 0 C: 115.495, €: 0.011 K: 236 v: 0.107, A: 0.036,
n: 0.207, K: 645
Circ. 6 C: 119.050, €: 0.034 K: 558 v: 0.273, A: 0.898,
1: 0.308, K: 530
Circ. 8 C: 53.516, €: 0.011 K: 102 v:0.072, A: 0.538,
n: 0.242, K: 684
Circ. 10 C: 108.645, €: 0.028 K: 498 v: 0.407, A: 0.238,
n: 0.245, K: 505
Circ. 12 C: 51.044, €: 0.014 K: 132 v: 0.059, A: 0.859,
n: 0.260, K: 500
Circ. 13 C: 119.953, €: 0.031 K: 217 v:0.254, A: 0.284,
n: 0.034, K: 555
Circ. 14 C: 108.214, €: 0.018 K: 43 v:0.205, A: 0.914,
i: 0.246, K: 549
Circ. 16 C: 117.43, €: 0.055 K: 408 v: 0.255, A: 0.458,

n: 0.173, K: 569

K: number of trees.
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When implementing the SVR, RFR, and XGBR models, it is crucial to understand the
impact of the chosen parameters following the optimization process. In the case of SVR,
the parameters C and € control the regularization and error tolerance, respectively. Higher
values of C can lead to overfitting, while very low values can result in underfitting. The
parameter € determines the width of the tolerance margin around the regression hyperplane.
Therefore, the optimization process using the Optuna framework was crucial in selecting
appropriate parameters and improving the SVR’s performance. On the other hand, in
the RFR model, the number of estimators (trees) K, determined through the optimization
process, improves the model’s generalization capability and reduces both the training
and optimization times. The XGBR model also has several important parameters, such
as the learning rate (17) and the number of estimators (K). The learning rate controls the
contribution of each estimator in the update process. Lower values can lead to better
generalization, while higher values can cause overfitting. The number of estimators affects
the model’s generalization capability and training time.

We also implemented an LSTM neural network model to compare with the LR, SVR,
RFR, and XGBR models. In the implementation process of this model, we tested various
architectures, including bidirectional LSTM networks and hybrid LSTM and convolutional
networks. We also experimented with stacking LSTM layers to achieve better results.
However, the best performance for the test set was obtained using a single LSTM layer with
one artificial neuron in the output. We also utilized Optuna to optimize the parameters of
the proposed LSTM network. Each Optuna trial for the LSTM network consisted of 100
training epochs using the Adam optimizer [66]. We conducted 500 trials for this model in
the Optuna framework. The best parameters for this model are presented in Table 9. It is
important to note that the activation function used in the LSTM layer of the models was
the hyperbolic tangent (tanh).

Table 9. Best parameters for LSTM model on each dataset.

Dataset Learning Rate Units Batch Size
Circ. 0 3.209 x 102 38 70
Circ. 6 1.055 x 102 23 24
Circ. 8 3.085 x 1072 20 23
Circ. 10 2.711 x 1072 80 24
Circ. 12 2521 x 1072 80 70
Circ. 13 3.351 x 1072 48 64
Circ. 14 2.101 x 102 28 36
Circ. 16 2.722 x 1072 80 64

The learning rate determines the step size used by the Adam optimization algorithm
during the training of the LSTM. Low learning rates can result in slower convergence or
become trapped in local minima, while high learning rates can make the training unstable
and prevent the model from finding an optimal solution. The number of units determines
the model’s capacity to learn complex representations and capture patterns in the data.
Higher values increase the learning capacity but also increase the training time and the
need for more training data. The batch size determines the number of training samples
used in each weight update pass of the LSTM. A larger batch size can speed up training by
processing more samples in parallel. However, a larger batch size requires more memory,
and training may become more challenging to parallelize. The choice of batch size depends
on the available memory, the size of the training set, and the trade-off between training
speed and accuracy. Thus, finding the appropriate parameters is crucial for striking a
balance between training speed and the performance of the LSTM model.
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7. Results
7.1. Performance Evaluation of Learning Models

Initially, we assessed the LR model’s performance on the acquired datasets to establish
a baseline for the performance metrics, to be achieved by the other learning models. After
optimizing the learning models, we used the hyperparameters from Table 8 to evaluate
the performance of the SVR, RFR, and XGBR models, and the parameters from Table 9
to evaluate the performance of the LSTM model. The performance metrics obtained for
the learning models for the test subsets of each energy demand dataset are presented in
Table 10. It is important to mention that the results presented for the performance metrics
are not normalized, as the data were returned to their original scale after the models’
predictions.

Table 10. Result of learning models” performance metrics for test sets of selected demands (non-
normalized values).

Demand RMSE (kW) MAE (kW) R2 (%)
Dataset LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM
Circ. 0 9.116 8.789 8.269 8.252 8.216 * 4.874 4.278 4.152* 4.273 4.285 92.705 93.22 93.998 94.02 94.07 *
Circ. 6 0.957 0.936 0.875 0.868 0.865* 0.312 0.321 0.267 0.272 0.251 * 91.94 92.29 93.26 93.37 93.52 *
Circ. 8 0.426 0417 0.424 0.420 0.415* 0.215 0.199 * 0.217 0.214 0.205 86.81 87.35 86.90 87.16 87.39 *
Circ. 10 2.987 2.948 2753 2.701* 2.723 1.278 1.298 1.140 1120 * 1.171 89.07 89.35 90.71 91.06 * 90.93
Circ. 12 1.296 1.291 1.302 1.317 1.288 * 0.729 0.728 0.729 0.754 0.694 * 94.23 94.27 94.17 94.04 94.30 *
Circ. 13 3.192 3.116 3.007 3.021 3.003 * 1.353 1.437 1.241 1.313 1.238 * 91.14 91.55 92.13 92.06 92,15 *
Circ. 14 0.670 0.656 0.595 0.606 0.577*  0.269 0.275 0.254 0.274 0.243 * 95.23 95.43 96.23 96.10 96.47 *
Circ. 16 4.825 4.461 4.011 3.875* 3.978 2912 2.240 2.161 2.154 2.202* 75.82 79.33 83.29 84.40 * 83.56

Values in bold with an asterisk represent the best results.

Comparatively, based on the results presented in Table 10, the LSTM recurrent neural
network model demonstrated superior performance compared to the other models for the
majority of the datasets. The LSTM showed good R? values, indicating that it can better
estimate the variability in demand patterns compared to the other models. Thus, we assert
that the ability of recurrent neural networks to handle temporal and sequential depen-
dencies was beneficial for the task of demand forecasting in the selected circuit datasets.
We emphasize that the optimization process conducted to select the best parameters for
this model, which are presented in Table 9, was crucial for the achieved performance. On
the other hand, the LR model performed the worst among the learning models. This can
be attributed to the simplicity of the linear model, which, in most cases, failed to capture
complex relationships in the demand data of the selected circuits. In all cases, the RMSE
performance followed the results of the R? metric. However, the MAE metric did not always
correlate with RMSE and R?, as other models generated better results than the LSTM in this
evaluation metric.

Regarding the performance of the SVR, RFR, and XGBR models, we can observe in
Table 10 that they outperformed the baseline metrics of the LR model. Only in one case, the
dataset of circuit 12, did the LR model perform better than the RFR and XGBR models in
terms of RMSE, MAE, and R2. Depending on the dataset and the selected parameters, at
least one of the machine learning models outperformed the others. For circuits 8 and 12,
the SVR model stood out among the three models. In circuits 13 and 14, the RFR model
performed better than the other two models. For circuits 0, 6, 10, and 16, the XGBR, being
more complex than SVR and RFR, achieved better performance. For the datasets of circuits
10 and 16, the XGBR outperformed the LSTM model, which performed better than all the
other models for the other datasets. In general, we can observe that the RFR and XGBR
models tend to have better performance when compared to SVR in terms of RMSE and
MAE in most cases, with XGBR standing out.

Considering the descriptive statistical data presented in Table 7 and Figure 9, we
can observe that the variability in average values, standard deviation, and data range of
demand influences the performance of the models. In the datasets of circuits 12 and 13,
for example, where there is a greater variation in the data range, the SVR and RFR models
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outperformed others due to their better handling of data dispersions in these datasets. For
the circuit 8 data, where abnormalities (outliers) are illustrated in Figure 9, it was observed,
through the R? metric in Table 10, that the learning models’ generalization ability was
significantly affected for this dataset. Additionally, in the circuit 0 dataset, which exhibits
greater variations as it represents the entire installation’s energy demand, we observed
the highest error values. This observation also justifies the performance of the LR models,
which are sensitive to outliers, variance, and complex relationships within the datasets.
In such cases, more complex and flexible models, such as LSTM, might be needed for
capturing demand patterns. It is important to highlight that, to enhance the performance
of the LSTM networks considering the high variance of the datasets exposed in Figure 9,
we observed that the Optuna optimizer sought to increase the number of LSTM units, as
presented in Table 9, so that the learning model could better capture the demand patterns.

Additionally, Table 11 presents the total optimization time for each model to search
for the best parameters with the Optuna framework. Subsequently, using the optimal
parameters, Table 12 illustrates the training and prediction times for each learning model.

Table 11. Total study time to optimize learning models.

Demand Total Study Time (s)
Dataset SVR RFR XGBR LSTM
Circ. 0 507.04 515.30 1512.57 55,554.55
Circ. 6 488.40 556.79 999.02 22,786.94
Circ. 8 505.96 563.52 1308.05 3995.51
Circ. 10 537.58 605.69 1113.27 24,081.63
Circ. 12 499.79 501.52 1231.30 20,654.27
Circ. 13 521.80 508.32 891.77 27,640.51
Circ. 14 488.50 453.44 1229.87 27,559.57
Circ. 16 555.51 562.22 1333.36 18,281.69

Table 12. Training time and prediction time of learning models.

Demand Training Time (ms) Prediction Time (ms)
Dataset LR SVR RFR XGBR LSTM LR SVR RFR XGBR LSTM
Circ. 0 35.06 228.90 117.07 3302.61  29,469.54 3.02 3.00 1.94 2.00 281.49
Circ. 6 2.00 126.98 209.68 1740.05  63,918.14 0.99 1.00 3.99 1.99 297.31
Circ. 8 1.01 106.73 31.67 236245  64,716.04 1.04 2.00 0.99 1.99 280.51
Circ. 10 2.10 218.34 245.26 1524.37  52,318.09 1.06 2.01 4.84 1.99 668.13
Circ. 12 0.99 61.58 53.69 1804.42  67,387.26 1.14 2.98 2.01 1.00 293.59
Circ. 13 1.99 193.57 105.97 965.42  23.293,50 1.01 3.00 1.05 1.00 269.96
Circ. 14 1.94 184.85 22.01 1186.26  44,027.02 0.99 1.00 0.99 1.51 272.30
Circ. 16 0.99 301.30 192.10 2015.23  24,600.22 1.01 2.01 5.01 2.00 295.66

Despite delivering the highest performance, the LSTM recurrent network model
demanded a greater computational time for optimization, training, and prediction processes.
As outlined previously in Section 6.7, the variables such as units, batch size, and learning
rate significantly influenced the training duration of the LSTM models. On the other
hand, the LR model demonstrated a shorter training and prediction timeframe. It is
worth noting that the optimization, training, and prediction durations directly correlate
with the parameters employed in the model implementation, which varied throughout
the hyperparameter tuning process and the learning models” evaluation. For instance,
the training time for the RFR model increased for datasets where the tree count was
higher, similar to the XGBR model when comparing the results in Table 12 with the
hyperparameters displayed in Table 8. In the case of SVR, the regularization parameter C
directly impacted the training duration. The XGBR model occupied the second-longest
computational time in the training process, while the SVR and RFR models alternated
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between the measured durations during the analysis. Hence, for demand data where the
training parameters demanded a larger computational effort, the models’ training time
was extended, subsequently influencing the optimization time for the selected dataset. It
is crucial to underscore that, as per Section 6.4.4, although the XGBR model necessitated
more training time, its prediction duration was reduced, aligning it closely with simpler
models such as LR.

7.2. Evaluation of Our Proposal for Demand Forecast

Table 13 outlines the count of actual demand exceedances beyond 120 kW sourced
from the building installation’s test data subset (circuit 0), alongside the number of demand
exceedances forecasted by each learning model throughout the period from 25 March to 12
April 2023, representing the test set of demand data.

Table 13. Actual and predicted number of demand overruns by learning models.

Actual LR SVR RFR XGBR LSTM
38 22 24 30 30 32

As demonstrated, during the testing period for the implemented models, the LSTM
model, notwithstanding its higher computational cost for training, proved more effective
than other models in the forecasting task. This makes it ideal for use in the SCC to predict the
energy demand for the upcoming 15-min intervals in order to avoid demand exceedances.
In this context, the LR and SVR models fell short in detecting these exceedances, while
the RFR and XGBR models exhibited similar performance. Consequently, the metrics and
results elaborated in the prior section align with the comparison made in Table 13.

For comparison purposes, Figure 13 depicts the predictions made by the examined
models from 1:00 a.m. on 7 April to 8:00 a.m. on 8 April 2023. The figure highlights the pre-
cision with which the models forecast the demand, particularly during periods of minimal
variation. Generally speaking, it is observed that the LR, RFR, and SVR models tend to be
less precise during moments of variation in comparison to the XGBR and LSTM models.
However, during instances of high variation, such as shown for the data from circuit 16, the
models are prone to consistent errors that impair their performance in achieving forecasting
metrics. Additionally, Figure 14 showcases both actual and forecasted demands using
the LSTM neural network models for each circuit’s test sets during the period from 26
March to 4 April 2023. For the data from circuits 10, 13, and 16, we highlighted periods
of high variance in energy demand in yellow, where the LSTM model did not perform
adequately. This situation might be prevalent for loads with constant energy demand
variation, as in the case of the three air conditioning units in the installation. Under these
circumstances, the RMSE metric penalizes the performance of learning models sensitive
to these variations. Consequently, a similar outcome is reflected in the R? metric since
the model fails to accurately capture these variations. To mitigate these inaccuracies, we
could contemplate incorporating other correlated data or different forecasting techniques
to enhance the predictability of the forecasting models.

For the circuit 0 data, which represents the entire building installation, we marked
in dashed red lines the contracted demand of 120 kW, as shown in Figure 14. From April
1, we observed that the installation’s demand exceeded the contracted demand in certain
periods. These demand exceedance events are marked in dark red in the figure, both for
the installation data (circuit 0) and for the data from the other circuits. We also highlighted
in light red the periods in which the circuits had increased demand compared to the data
observed in previous periods. We noticed that the algorithm generated forecasts that closely
tracked the actual values over time. We suggest using these forecasts to guide the control
of the installation’s demand and avoid potential exceedances.
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Figure 13. Actual (black) and predicted demand by the LR (magenta), SVR (cyan), RFR (green), XGBR
(blue dashed), and LSTM (red dashed) models during the period 01:00 a.m. on 7 April 2023 until
08:00 a.m. of 8 April 2023.
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Figure 14. Contracted demand (dashed red), and actual (blue) and predicted values (dashed black)
for the 15-min power demand of the selected circuits using the respective proposed LSTM recurrent
network models in the period from 26 May to 4 April 2023.
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7.3. Discussion of the Results Obtained from the Monitoring Proposal

We implemented a cluster of sensor devices that communicate within a power distribu-
tion panel using an ad hoc wireless network. These devices transmit electrical parameters
from a building installation and its circuits to a local server, and subsequently to a supervi-
sion and control center (SCC). Our proposal’s development was based on SmartLVGrid
metamodel, which advocates technological updates through the retrofitting of existing
systems. To implement the middleware layer of this model, we designed two energy moni-
toring devices: the ACU-MAIN and the ACU-BREAKER. The ACU-MAIN is responsible
for monitoring the main power bus of the installation’s distribution panel and acts as a
concentrator for the ACU-BREAKER cluster, which monitors the energy consumption of
the remaining circuits in the panel.

During the implementation of the ACU-BREAKER and ACU-MAIN devices, we
took into account the physical space constraints available in the panel for installation.
Therefore, we proposed a novel approach for retrofitting breakers by updating the ACU-
BREAKER device compared to the work presented in [5]. This approach facilitates the
physical connection interface with the monitoring device, enabling the digital convergence
of legacy infrastructure to the smart buildings paradigm. Additionally, we implemented an
interoperability layer using request and response message exchanges that travel through
the physical layer of the IEEE 802.11 standard via the ESP-NOW protocol. This wireless
communication enables our retrofitting proposal without the need for additional wired
ethernet network points, following the directives of the factory in which our study took
place. Thus, we enable flexible retrofitting of the installation by leveraging pre-existing
resources and adding capabilities to enable energy management.

Our proposal has been operating continuously and uninterruptedly since the start of
data collection after its installation, validating our approach to building energy monitoring
retrofitting. As a result, we were able to build a database containing energy data from the
legacy installation for its managers, including power factor, active energy, current, and
voltage data for both the overall installation and individual circuits. This has enabled
data-driven energy management of the legacy installation, as the monitored data became
available in databases and dashboards at the supervision and control center (SCC).

7.4. Discussion of the Results Obtained for Forecasting Energy Demand in the Proposed Scenario

Based on the Brazilian regulatory resolution ANEEL n° 1000/2021 [57], the consumer
unit in question falls under the binomial tariff structure. In this case, it is charged based
on both consumption and a contracted limit demand, which is measured by the energy
utility every 15 min. Incidentally, during periods of high production, the factory exceeds
the contracted demand of 120 kW and consequently incurs penalties. With the collected
database, we conducted an analysis of the loads that contribute the most to the increase
in consumption and demand exceedances of the installation using Pareto analysis. We
identified seven loads that contribute to nearly 80% of the total installation consumption.
Based on this, we analyzed the variations in energy demand every 15 min for the loads
of these circuits. To perform our analysis, we applied the sliding window technique with
10 previous demand samples and min-max normalization as a processing step for demand
forecasting for the next 15 min. Subsequently, we employed various learning models,
namely, linear regression (LR), support vector regressor (SVR), random forest regressor
(RFR), XGBoost regressor (XGBR), and a long short-term memory (LSTM) recurrent neural
network model. We evaluated the performance of each model and, to ensure the best
possible performance, we utilized the optimization framework Optuna to search for the
best parameters for the demand data of each selected circuit.

We observed that the LSTM model performed the best, followed by the XGBR, RFR,
and SVR models, respectively. The LSTM model was able to capture the demand pattern of
the selected circuits most effectively, as shown in the metrics presented in Table 10, and it
predicted the highest number of demand exceedances for the test set, as shown in Table 13.
However, the LSTM model required the longest computation time for optimization, training,
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and making predictions (Tables 11 and 12). All the other models outperformed the baseline
LR metrics, with notable performance from the XGBR model, which outperformed LSTM
for two datasets (circuits 10 and 16). This opens up opportunities for future neural network
architectures that can surpass the metrics presented in Table 10. In Figure 14, we can
observe that the predictions made by the LSTM model performed well for the selected
circuit datasets. We noted that depending on the nature of the monitored loads, there may
be data variations that could affect the predictability of the forecasting algorithms. We
hope that by increasing the dataset size and incorporating other variables correlated with
demand and seasonality, we can improve the performance of the learning algorithms for
demand forecasting tasks. In our research, we have achieved the objective of demonstrating
the impact and relevance of monitoring and forecasting the energy demand of circuits in a
legacy building installation, aiming to detect possible breaches of contracted demand and
identify the circuits where action should be taken to rectify demand transgressions in line
with the regulatory framework of the Brazilian energy system.

8. Conclusions

In this work, we developed an AloT strategy that performs energy demand forecasting
for a legacy building installation and its circuits for the next 15 min, based on the retrofit
of the pre-existing energy system and the premises of the SmartLVGrid metamodel. The
protocols of the SmartLVGrid metamodel enabled us to design an architecture that facilitates
the technological transformation of a legacy installation into the smart buildings paradigm,
making the most of the existing resources.

During the development of this study, we conceived a cluster of sensor devices called
ACU-BREAKERs that monitor the individual electrical parameters of each electrical circuit
and communicate through an ESP-NOW ad hoc network with a coordinating device
called ACU-MAIN. In our proposal, the ACU-MAIN device performs multiple functions,
including coordinating data requests from other ACUs, monitoring the main power bus of
the installation, and transmitting the collected data via ethernet to a locally available server
within the installation. The server, in turn, forwards the collected data to the cloud-hosted
SCC, where data analysis is conducted to improve the energy management processes.

Our proposal operated continuously from 15 January to 12 April 2023, and with the
data obtained we conducted statistical analyses to identify the loads that contributed the
most to the increase in consumption and energy demand of the installation. Based on
Brazilian regulations, we focused on forecasting for the next 15 min to detect possible
demand surpasses in the installation and identify the main loads causing this transgression.
In this way, we provided data-driven insights for decision making regarding possible
surpasses and where and when to act to control the load demand.

We employed preprocessing techniques such as sliding window for dividing the
training and testing datasets of each circuit, along with min-max normalization of the
data. As learning models, we used LR as the baseline for evaluating the machine learning
models SVR, RFR, XGBR, and an LSTM-based recurrent neural network model. The
hyperparameters of each learning model were optimized using the Optuna framework for
Bayesian optimization, in order to extract the best possible performance. Subsequently,
we evaluated the learning models, and the LSTM model outperformed the other learning
models, followed by XGBR, RFR, SVR, and LR. In this order, the models had longer training
and optimization times. We also evaluated which models successfully predicted the highest
number of demand surpasses, with a highlight on the LSTM and XGBR models.

It is important to emphasize that we evaluated a model for each dataset of each circuit.
For the construction of building electrical systems with more circuits and power boards, the
implementation of learning models for each dataset could become unfeasible. In addition,
for other cases and systems, the use of other learning models, preprocessing, and feature
selection methods and other retrofit strategies could be adopted to obtain better results for
the benefit of a more sustainable building ecosystem.
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However, whether to optimize the use of energy inputs or to plan operations in
building facilities, in our proposal, the forecast and monitoring of energy demand allow
data-based management of pre-existing energy systems in legacy facilities. In precarious
scenarios, without infrastructure or resources to implement modern control and commu-
nication systems, our retrofit architecture facilitates a non-abrupt digital transformation
towards smart building convergence, leveraging AloT concepts and predictive models
based on wireless network data. In addition, we digitized the installation’s circuits using
the assumptions of our retrofit architecture, which recommends taking advantage of ex-
isting resources through well-defined protocol stacks. We emphasize that the proposed
architecture represents an alternative for using electrical parameters from legacy circuits
to create databases for predictive analysis, such as the energy demand forecast presented
in this work. Thus, it is possible to guarantee the sustainability and improve the energy
efficiency of old building installations.

9. Future Perspectives

Once we make the electrical system observable and allocate resources for demand
forecasting, we enable the management of current and future energy resources from the
demand side. Therefore, for future work, we suggest allocating local intelligence resources
to implement new strategies that include demand control of the installation based on local
business rules. This can be achieved by controlling the loads present in the installation’s
circuits, as we know which loads will affect the installation during demand exceedances.
By also forecasting the demand of the installation’s loads, we suggest utilizing distributed
energy resources to inject the necessary energy to compensate for the energy demand
during peak moments, avoiding possible exceedances from the energy generation side. In
this way, renewable or non-renewable resources can be activated based on the proposed
predictive intelligence to partially or fully meet the installation’s energy demand.

Additionally, we suggest that this process may involve new dynamic energy markets,
where energy sources from free energy markets can be negotiated and utilized depending
on the predictability scenario of demand exceedances to reduce the costs associated with
possible exceedances. The prediction task can also analyze future energy costs, recom-
mending potential energy suppliers based on this dynamic analysis. Further work in this
field can explore other prediction resources based on other energy aspects of a building
installation, involving protection systems, energy consumption, or power quality. This
includes studies focused on optimizing energy utilization and mitigating harmonics in the
installation.

From the perspective of artificial intelligence models, we suggest evaluating the
proposed strategy for other learning model architectures and datasets, including variations
of the LSTM recurrent neural network model in the context of building electrical circuits in
smart buildings. We also recommend using other preprocessing techniques and different
sliding window sizes to assess the performance of the learning models in short, medium,
and long-term prediction contexts, depending on the study’s needs. For future work, we
suggest exploring knowledge transfer techniques to facilitate the training of other learning
models for circuits within the same cluster and for clusters located in other locations or
installations. In this work, we developed specialized demand forecasting models for each
circuit of the installation, which can make it costly to maintain the system in some cases.
Through knowledge transfer techniques, it is possible to generalize the demand pattern
capturing techniques for circuits in a building installation and scale this strategy to other
cases and systems, involving the same installation or other legacy installations.
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Abbreviations

The following abbreviations are used in this manuscript:

ACU
AEMO
Al
AloT
ANEEL
ANN
AR
ARIMA
API
BGM
CIN
Cire.pl
CNN
CSFs
Damas
DLM
DRFs
DTR
ECMWEF
EIA
EM-GMM
ENR
ETS

ES

FAR
FARX
FCC
FFANN
GBR
GPU
GRNN
GRU
HW
IEEE
IESO
TIoT
ISFs
JSON
KEPCO
KMA
KNNR

Automation and communication unit
Australian Energy Market Operator
Artificial intelligence

Artificial intelligence of things

Agéncia Nacional de Energia Elétrica
Artificial neural network

Autoregressive model

Autoregressive integrated moving average
Application programming interface
Bayesian Gaussian mixture

Coupling and interaction node

Centrum Informacji o Rynku Energii
Convolutional neural networks
Computational support functions

Damas Energy information system
Dynamic linear model

Domain retrofitting functions

Decision tree regression

European Centre for Medium-Range Weather Forecasts
Energy Information Administration
Expectation maximization Gaussian mixture model
Elastic net regression

Smoothing state space model

Exponential smoothing

Functional autoregressive model
Fractional-order autoregressive model with exogenous variables
Florida Climate Center

Feedforward artificial neural network
Gradient boosting regression

Graphics processing unit

General regression neural network

Gated recurrent unit

Holt-Winters

Institute of Electrical and Electronics Engineers
Independent electricity system operator
Internet of things

Interdomain support functions

JavaScript object notation

Korea Electric Power Corporation

Korea Meteorological Administration
K-nearest neighbor regression
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LAN Local area network
LR Linear regression
LSTM Long short-term memory
MAC Media access control
MAE Mean absolute error
MAN Metropolitan area network
MLP Multilayer perceptron
MPR Multivariate polynomial regression
MRM Multiple regression model
MQTT Message queue telemetry transport
NARX Non-linear autoregressive exogenous
N-BEATS Neural basis expansion analysis for interpretable time series
NNAR Autoregressive neural networks
NNETAR Neural network time series forecasts
ONS Operador Nacional do Sistema
OPs Operational primitives
OPSD Open power system data
p2p Peer-to-peer
Pol Points of interface
PR Polynomial regression
QoS Quality of service
R? R-squared score
RAM Random access memory
RFR Random forest regressor
RMS Root mean square
RMSE Root mean squared error
RNN Recurrent neural networks
RS Regression with seasonality
SARIMA Seasonal ARIMA
SCC Supervision and control center
SLEN Single-layer feedforward neural networks
SmartLVGrid ~ Smart low-voltage grids
SN Service node
SoC System-on-a-chip
SSD Solid state drive
SVR Support vector regression
TBATS Trigonometric Box-Cox transform, ARMA errors, trend, and
seasonal components
TCN Temporal convolutional network
TCP Transmission control protocol
TFT Temporal fusion transformer
us. United States
w Watts
WSN Wireless sensor network
XGBoost Extreme gradient boosting
XGBR XGBoost regressor
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3 CONCLUSOES PARCIAIS

Esta tese tem como objetivo propor arquiteturas sist€émicas robustas, fundamentadas em
estratégias de retrofit, com o propdsito de modernizar unidades consumidoras pré-existentes
através da insercao de recursos analiticos e preditivos que potencializam a gestdo energética. As
solucdes propostas sdo baseadas nos conceitos dos paradigmas de Internet das Coisas (IoT) e de
Inteligéncia Artificial das Coisas (AloT), possibilitando o monitoramento remoto e a previsdo da

demanda energética, tanto a nivel da instalacdo total como dos seus circuitos constituintes.

As solugdes oferecidas promovem a inclusao sistematica de recursos descentralizados
para o monitoramento energético em tempo-real, com premissas e interfaces bem definidas,
utilizando middlewares meticulosamente modelados. Isto permite que esses recursos possam ser
utilizados e reaproveitados como opg¢des eficientes para a convergéncia tecnoldgica e virtuali-
zacdo de circuitos prediais e industriais legados em diversos cendrios e sistemas. Além disso,
estabelecemos primitivas operacionais visando fomentar a interoperabilidade e a interconexao
dos dispositivos de monitoramento em redes de dados sem fio, adaptadas as necessidades das
instalagdes j4 existentes. Tanto os recursos de middleware como de interoperabilidade, funda-
mentados nas pilhas de protocolos do metamodelo SmartLVGrid, visam a utilizagdo méxima dos

recursos presentes na infraestrutura das unidades consumidoras legadas.

Para a visualizacdo, armazenamento e processamento dos dados adquiridos, integramos
em nossas arquiteturas a coleta de dados dos circuitos prediais e industriais legados, juntamente
com aplicacdes robustas hospedadas tanto em servidores locais como na nuvem, empregados con-
forme as necessidades especificas das instalacdes analisadas. Com isso, atribuimos as unidades
consumidoras pré-existentes a capacidade descentralizada de processamento, disponibilizando
recursos computacionais especializados para a gestao energética dessas instalacdes. Isso envolve
a coleta e construcdo de bases de dados energéticos das unidades consumidoras legadas e de seus
respectivos circuitos, que comumente ndo possuem bases de dados existentes ou recursos para a

andlise avancada dos parametros elétricos monitorados.

Utilizando os dados adquiridos, fomos capazes de analisar a demanda energética e outros
parametros das instala¢des, em conformidade com as regulamentacdes da ANEEL. Isso permitiu
a otimizacao dos recursos energéticos e a andlise dos parametros de acordo com as necessidades
especificas da instalacdo no contexto tarifério brasileiro. No Artigo 01, os recursos de software
desenvolvidos e a andlise realizada focaram tanto em aspectos de qualidade de energia, incluindo
variacdes de tensdo de curta duragdo e fator de poténcia, como principalmente na demanda
energética. Com a inclusdo sistemdtica desses recursos, conseguimos, no artigo 01, mitigar a
demanda energética da policlinica odontoldgica da Universidade do Estado do Amazonas e
de seus circuitos, reduzindo a demanda da instalagdo abaixo da demanda contratada com a

concessiondria. Isso evidenciou a importancia do monitoramento eficaz nao apenas da unidade
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consumidora como um todo, mas também dos circuitos que a compdem.

Considerando que a demanda energética estipulada pela ANEEL € analisada a cada 15
minutos nas unidades consumidoras, incluimos na arquitetura proposta no Artigo 02 ferramentas
de previsao de demanda para auxiliar as unidades consumidoras prediais no controle deste
parametro, visando detectar possiveis ultrapassagens de demanda que possam sobrecarregar
ainda mais a tarifa energética dessas instalacdes mediante as regulamentacdes do setor elétrico
brasileiro. Para tanto, realizamos um pré-processamento para tratar e organizar os dados adquiri-
dos da instalacdo e de cada circuito. Na previsdo, utilizamos métodos estatisticos e modelos de
aprendizado de maquina, cada um deles otimizado para obter o melhor desempenho possivel
das previsdes realizadas. Para esse fim, desenvolvemos um método de otimizagdo bayesiana
para modelos de aprendizado de mdquina, cuja aplicacao resultou na superacdo das métricas
de desempenho para a tarefa de previsao de energia de uma inddstria, baseada em uma base de
dados de renome no campo. Replicamos a técnica no Artigo 02, mas com os conjuntos de dados
de demanda energética recolhidos de cada circuito monitorado em uma instalacdo industrial
no Polo Industrial de Manaus. Neste artigo, analisamos 8 conjuntos de dados com 5 modelos

preditivos para cada dataset.

3.1 GENERALIZACAO DA PESQUISA PARA APLICACOES FUTURAS

Com base nas experimentagdes conduzidas nos artigos, conseguimos promover a moder-
nizacdo de unidades consumidoras legadas, integrando recursos de monitoramento energético em
tempo real e aplicando técnicas de inteligéncia artificial. A fim de demonstrar a aplicabilidade

genérica das arquiteturas propostas em outros casos € sistemas, apresentamos a Figura 4.

Na figura apresentada, é possivel identificar clusters de ACUs distribuidos pela rede de
distribuicdo de energia de uma unidade consumidora legada. Os ACUs, ja apresentados nos
Artigos 01 e 02, estabelecem interacdes diretas com os circuitos e barramentos de energia da
estrutura. Nas pesquisas realizadas, eles coletam parametros elétricos dos circuitos monitorados
pela porta "Get". Contudo, podem ser adaptados para atuar nos circuitos da instalacdo, por
meio da porta "Run". Considerando que a configuracdo de rede necessdria em uma determinada
instalacdo pode variar, devido a regras de negdcios especificas ou restricdes infraestruturais,
podem ser estabelecidas multiplas interfaces de comunicagao, facilitando a interoperabilidade do

sistema. Na ilustracdo, essas interfaces sdo representadas como A e B.

Visando a expansibilidade do sistema ao longo da infraestrutura e incorporando os princi-
pios de processamento distribuido do metamodelo SmartL.VGrid, cada cluster de monitoramento
€ equipado com um ACU subcoordinator, aqui nomeado ACU-SUBMAIN. Esses ACUs estabe-
lecem comunicagao direta com o coordenador principal do sistema, o ACU-MAIN, transmitindo
e obtendo informacdes por meio de suas interfaces de comunicacdo. Ao ACU-MAIN podem
ser designados recursos avancados de processamento de borda (Edge), assim como capacidades

preditivas apoiadas em TinyML, em casos de restri¢do de capacidade computacional. Dessa
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Figura 4. Arquitetura sistémica genérica de retrofit para modernizagao de instalacdes legadas.

forma, incorporamos funcionalidades analiticas avangadas a este ACU. Estes recursos também

podem ser incorporados em outros ACUs do sistema, conforme necessidade.

Consequentemente, as informagdes coletadas podem ser encaminhadas diretamente para
os hosts presentes na estrutura, operando em modo fog ou cloud. Dependendo do contexto, pode
haver colaboracao fluida entre fog e cloud, conforme exposto no Artigo 02. A partir disso, o
Centro de Supervisdao e Controle da Aplicacdo € incorporado ao host central do sistema para
disponibilizar recursos de inteligéncia artificial, visualizag¢do, processamento e armazenamento
de dados.

Neste contexto, concluimos que a abordagem proposta nesta tese, ao generalizar as arqui-
teturas e estratégias de modernizacdo, contribui significativamente para o avango da atualizacdo
de unidades consumidoras legadas. As estratégias de retrofit ndo apenas promovem a preservagao
e otimizacgdo dos sistemas existentes, mas também se destacam como solucdes sustentaveis,
potencializando a gestdo energética através de uma evolugdo tecnoldgica gradual e efetiva.
Além disso, esta abordagem garante a escalabilidade para as solugdes tecnoldgicas de retrofit,
adaptando-se a diferentes cendrios e sistemas gracas as interfaces fisicas e logicas integradas as
infraestruturas existentes, que sao fundamentadas nos principios e protocolos do metamodelo
SmartLVGrid. A arquitetura proposta € holistica, abracando flexibilidade, expansibilidade e
interoperabilidade ao longo de toda a instala¢ao, permitindo operacdes em fog, cloud e edge
conforme as peculiaridades e recursos de cada contexto. Esta versatilidade confirma a relevancia
deste trabalho como uma proposta robusta para os complexos desafios energéticos da atualidade,

principalmente em unidades consumidoras pré-existentes.
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3.2 PROXIMOS PASSOS

Para os proximos passos da pesquisa desta tese de doutorado, seguiremos com a seguinte

cronologia de atividades:

1. Defini¢ao de uma arquitetura sistémica, seguindo os conceitos de nossas propostas de re-
trofit, para viabilizar a previsao de séries temporais de demanda energética nos dispositivos

sensores, segundo as premissas do paradigma de TinyML. Até Outubro de 2023.

2. Avaliacdo de modelos preditivos para demanda energética otimizados com técnicas de
quantizacdo e/ou destilacdo de conhecimento, para serem inseridos nos dispositivos,

incorporando capacidade preditiva descentralizada em borda. Até Dezembro de 2023.

3. Avaliar os resultados obtidos a partir da arquitetura proposta e dos modelos de aprendiza-

gem modelados para inferéncia preditiva em borda. Até Janeiro de 2024.

4. Preparar e submeter publicacdo em periddico internacional de acesso aberto com avaliaciao
Qualis Capes A em engenharias IV, a fim de completar e concluir o documento de tese.
Até Fevereiro de 2024.

5. Concluir o documento de tese de doutorado. Até Margo de 2024.
6. Entrega do documento de tese para banca avaliadora. Até Marco de 2024.

7. Defesa final da tese de doutorado. Até Abril de 2024.
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Abstract—This work contributes with a new approach for
tuning hyperparameters of machine learning models, based on
sequences of optimization studies based on an initial range of
hyperparameters. Through the proposed methodology, each se-
quence of studies allows the delimitation of an optimal range of
hyperparameters to be inserted and evaluated by a Bayesian op-
timization framework, Optuna, in search of better performance
metrics for the model used. The technique developed in this
work was applied for short-term electrical energy prediction,
with 15-minute and 1-hour data, using energy consumption
data from a steel industry. We used ensemble and decision
tree learning models as predictors, including Random Forest
Regressor, Support Vector Regressor and Cubist Regressor,
which have already been used in the literature to predict energy
consumption using the same database. In an unprecedented
way, we used the XGBoost model as a predictor of energy
consumption in the proposed context. The results obtained
from each model surpassed the performance metrics previously
obtained in the literature for the same prediction scenarios,
even without the use of specific feature selection techniques
or pre-processing. To predict the 15-minute and 1-hour energy
consumption, we obtained a Root Mean Square Error of 0.175
kWh and 1.341 kWh for the test set, respectively, using the
Cubist Regressor model.

Index Terms—machine learning, industry data science appli-
cations, bayesian optimization, hyperparameters, energy pre-
diction.

I. INTRODUCTION

The consumption of electrical energy has been increasing
on a global scale due to the growth of industries and
the widespread use of transportation, large machines, and
electronic market negotiations. In a city, buildings represent
around 30 percent of the total energy consumed globally,
and recent projections indicate that this value will increase
in the coming years [1]. In industries, the increase in energy
demand, due to the growing production of goods, can result
in high costs due to overconsumption, technical and non-
technical losses [2]. However, industrial productivity and the
growing demand for modern systems require uninterrupted
energy supply. In this scenario, tools for predicting and
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forecasting energy demand with the lowest possible error
become necessary to audit the electricity sector, in order to
reduce costs, plan the rearrangement of available distributed
energy resources, and improve operational strategies for
energy generation, transmission, and distribution

Different approaches are employed in the literature for pre-
dicting energy demand and consumption. These approaches
are categorized into short, medium, and long-term predic-
tions. While short-term prediction is used to estimate energy
consumption for the next few hours or days, medium-term
prediction is carried out between periods of days up to a
month, and long-term prediction is performed in monthly
or even annual analyses [3]. In Brazil, large power con-
sumers can be classified as binomial, being charged for both
energy consumption and demand, which is analyzed every
15 minutes [4]. Thus, many works in the literature focus
on short-term analysis as an alternative for analyzing future
energy demands and avoiding possible demand overruns in
the context of the Brazilian electricity sector [5].

Based on the periodicity of energy data and other avail-
able correlated data, it is possible to implement statistical
methods, machine learning models, and deep learning models
to perform demand prediction. The choice of technique to
be used depends on the complexity, dimension, and lin-
earity of the available data. Linear regression models and
autoregressive models such as ARIMA are examples of
statistical methods used for energy demand forecasting [6].
On the other hand, the work [7] evaluates the performance of
machine learning models for predicting consumption in smart
grids, such as Logistic Regression (LR), Support Vector
Machines (SVM), Naive Bayes (NB), K-Nearest Neighbors
(KNN), and Neural Networks (NN). Additionally, the authors
of [8] evaluated the performance of deep learning models for
predicting energy in smart microgrids, comparing them with
other models.

Other methods, such as ensemble learning, can also be
mentioned in the field of optimizing machine learning tech-



niques, improving the predictive performance of a single
model by training multiple models and combining their
predictions. In [9], ensemble learning is used through bag-
ging, random subspace, and boosting (BRSB) strategies to
improve the performance and robustness of energy demand
predictions. The authors of [10] showed how the use of
eXtreme Gradient Boost (XGBoost) achieves high accuracy
in predictions for residential building energy consumption. In
[11], the authors demonstrated the performance of Gradient
Boosting in identifying non-technical losses in smart grids.
On the other hand, decision tree-based algorithms can also
be cited as tools to aid in decision-making from classifica-
tion and regression tasks using categorical variables. Their
competitive advantage over other modeling techniques is
their ability to generate an accurate predictive model with
an interpretative flowchart that enables the user to extract
important information from a database. Decision tree-based
predictors can also be used in ensemble learning models,
such as Random Forest (RF) and Gradient Boosting, for
example [12]. In [13], the authors show that decision tree
regression is a viable alternative for understanding energy
consumption patterns. In [14], decision trees are preliminar-
ily used to mine energy consumption patterns and categorize
them so that subsequently ensemble learning methods can
predict the predefined consumption categories.

In order for machine learning models to perform at their
best, the importance of correctly adjusting their operating pa-
rameters is emphasized. There are two types of parameters in
machine learning models: the first, called model parameters,
can be initialized and updated during the data learning pro-
cess; the second, called hyperparameters, cannot be directly
estimated by the learning data and must be defined before
training a machine learning model as they define the model’s
architecture [15]. Therefore, correctly adjusting and manip-
ulating hyperparameters significantly increases the accuracy
of the prediction. Among the most common hyperparameter
tuning techniques, Grid Search and Random Search stand
out, which consist on testing all possible combinations or
randomly sampling a set of hyperparameters, respectively
[16]. Although widely used, these methods can be imprecise
and require a lot of computational effort, as users must
test different ranges of possibilities for each of the model’s
parameters used.

On the other hand, methods based on Bayesian optimiza-
tion have shown to be more efficient in finding the best
hyperparameters, since they use prior information about the
behavior of the objective function to guide the search [17].
In this context, recent studies have shown that the Optuna
framework, which uses Bayesian optimization, presents good
results compared to other methods, being a promising choice
for hyperparameter tuning of machine learning models, in-
cluding ensemble and decision tree learning models [18].

Therefore, in this work we present an alternative for
hyperparameter optimization of ensemble and decision tree
learning models using Bayesian optimization for short-term
energy consumption prediction, both for 15-minute and 1-
hour analysis. To do so, we used a multifactorial dataset
having as a source of study the energy consumption of a
steel industry in South Korea. The objective of this work
is to overcome the results and performance metrics already

obtained and presented in the state of the art for the same
database using ensemble learning models and decision tree,
which so far have presented the best results for forecasting
energy consumption. energy in this database, through the
proposed methodology. The decision tree learning model
used is Decision Tree Regressor (DTR), while the ensemble
learning models used are Random Forest Regressor (RFR),
XGBoost Regressor (XGBR) and Cubist Regressor. The
linear regression model will also serve as a baseline for the
metrics to be achieved with the implemented models. We also
hope to contribute with a practical methodology to enable
the implementation of efficient predictive models based on
machine learning, with reduced computational effort, for
industrial and building applications, where energy demand
is constantly mitigated and taxed.

In the next sections, related works and the contributions
of this work to the state of the art, theoretical concepts,
the proposed methodology, the results obtained, and the
conclusions will be presented.

II. RELATED WORKS

This section describes the related works on the dataset
used for predicting energy consumption in an steel industry.

A. Dataset for Steel Industry Energy Consumption

The multifactor database used was obtained from IEEE
DataPort and is called "STEEL INDUSTRY ENERGY
CONSUMPTION” [19]. The data in this database is from
DAEWOO Steel Co. Ltd in Gwangyang, South Korea. This
company produces steel coils, steel plates, and steel plates
and keeps energy consumption data hosted in the cloud. In
this database, energy consumption data in kWh and other
correlated parameters were recorded every 15 minutes during
the year 2018. Table I describes the parameters present in this
database for implementing machine learning algorithms.

TABLE I
DATA VARIABLES AND THEIR DESCRIPTIONS
Data Description
Variables Abbreviation Type Repr i
Date date DateTime DD/MM/YYYY HH:mm
Energy Usage Continuous kWh
Consumption
Lagging
current react. LagRP Continuous kVArh
power
Leading
current react. LeadRP Continuous kVArh
power
tCO2(CO2) CO2(tC0O2) Continuous ppm
Lagging
current power LagPF Continuous %
factor
Leading
current power LeadPF Continuous %
factor
Number of
seconds from NSM Continuous S
midnight
Week Status Wstatus Categorical ‘Weekend(0) or a
‘Weekend(1)
Monday, Tuesday,
Day of Week Dweek Categorical ‘Wednesday, Thursday,
Friday, Saturday, Sunday
Load Type Ltype Categorical | Light, medium and max. load
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B. State-of-The-Art Results for this Dataset

As the dataset used for predicting energy consumption
in an steel industry is newly published, there are still few
works with predictive models related to it. In the works
found, authors present approaches for analyzing energy con-
sumption at scales of 15 minutes and 1 hour. In [20] and
[2], the authors presented predictive models for industrial
energy consumption using the mentioned dataset for 1-hour
periods. Since the dataset has data for every 15 minutes,
in for the hourly approach prediction the authors weighted
the variables through averages and accumulation and used
the categorical data of each determined hour in the “Date”
variable. The models used by the authors were Linear Re-
gression (LR), Support Vector Regression (SVR), Gradient
Boosting Regressor (GBR), and Random Forest Regressor
(RFR). The results obtained by the authors for testing sets
are exposed in Table II using the metrics of Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE). It
should be noted that the hyperparameterization method used
by the authors in these works was the Grid Search, which
indicates the evolution of error reduction of some models as
the iterations occur. However, the computational time used
in hyperparameterizing the models was not informed.

TABLE I
PERFORMANCE METRICS OBTAINED IN [20] AND [2] IN THE
PREDICTION OF ENERGY CONSUMPTION EVERY HOUR

Regression Results in Testing Set
Models RMSE (kWh) | MAE (kWh)
LR 9.31 6.12
SVR 10.66 7.88
GBR 7.47 4.68
RFR 7.33 4.60

On the other hand, the authors of [21] and [22] explored an
approach for predicting energy consumption every 15 min-
utes. The models used were LR, Classification and Regres-
sion Trees (CART), K Nearest Neighbor (KNN), SVR, and
RFR. It is important to mention that the CART algorithm is
used in the Scikit-learn library for implementing decision tree
regression and classification models [23]. The Grid Search
technique was also used by the authors for hyperparameteri-
zation of the models. The best prediction result was obtained
in the work of [22] with the Cubist regression model. It
is important to note that no preprocessing technique, other
than treatment of categorical variables, was implemented in
the cited works. However, the authors of [24] implemented
preprocessing of continuous variables by normalizing their
values. Additionally, they implemented predictive models
based on ensemble and decision tree learning, including the
Extra Tree model, as well as deep learning, using Multilayer
Perceptron (MLP), for predicting energy consumption every
15 minutes. However, the authors did not use hyperparam-
eterization methods for the models implemented. In [25],
the authors used Elephant Herding Optimization (EHO) and
minimum Redundancy and Maximum Relevance (mRMR)
for feature selection in regression models, producing relevant
results for the state of the art in regression models with the
dataset in question. The performance metrics of RMSE and
MAE for testing sets obtained in the cited works are shown
in Table III. It is worth noting that the RMSE values of [24]
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were obtained from the MSE values disclosed in the work,
and that the best results of [25] will be disclosed.

TABLE III
PERFORMANCE METRICS OBTAINED IN [21], [22], [24] AND [25] IN THE
PREDICTION OF ENERGY CONSUMPTION EVERY 15 MINUTES

Regression Results in Testing Set
Models RMSE (kWh) | MAE (kWh)
LR [21] 4385 256
LR [22] 4.86 2.56
LR [24] 454 2.59
LR [25] 2.83 -

CART [21] 346 2.04

CART [22] 5.69 2.96

DTR [24] 1.44 0.58

SVR [21] 1.97 1.71
SVR [22] 1.97 154

SVR [24] 4.57 2.39

SVR [25] 1.53 -

KNN [21] 2.99 1.75

KNN [22] 3.61 1.48

KNN [24] 5.44 28

KNN [25] 2.74 -

RFR [21] .12 0.36

RFR [22] 1.13 0.36

RFR [24] 1.03 0.37

RFR [25] 0.98 -
ET [24] 1.09 0.41

GBR [24] 2.93 1.72

GBR [25] 0.45 -

MLP [24] .18 0.61

Cubist [22] 0.24 0.06

Cubist [25] 0.21 -

Additionally, the authors of [26] performed dynamic mod-
eling to predict energy consumption using this dataset and
deep learning techniques. The graphical results illustrating
the performance metrics obtained indicate a RMSE above 1
kWh and a MAE above 0.5 kWh. Other works in the litera-
ture use the available data for future consumption predictions
using statistical models, ARIMA and SARIMA, with data
from the same South Korean company in 2017 [27], [28]. On
the other hand, other works present classification approaches
for the energy context with the same dataset employed in
this work [29], [30].

C. Research gap

The results presented in the state of the art were satis-
factory for the learning studies developed. In addition to
different preprocessing techniques used for prediction and
classification tasks of industrial energy consumption, the
studies also contribute with different solutions for feature
selection and hyperparameterization of learning models.

However, regarding the optimization of the proposed learn-
ing models, where Grid Search was the most used technique,
it is known that choosing the best parameters by this method
depends on a predetermined list of values to be used in
the hyperparameterization process. This makes this tuning
process expensive and imprecise, preventing it from being
used in industrial processes that require efficiency and agility.

On the other hand, the use of a method that employs
probabilistic techniques to select the best parameters within
a suggested interval increases the probability of obtain-
ing better performance metrics for the models, since the
optimization process will not be limited to the discrete
parameters passed to the hyperparameterization technique.
In addition to reduced computational time in the search for
better results due to this type of resource, it is possible



to use this type of hyperparameterization to delimit the
optimal range of parameters used in each study to make the
learning models more robust and precise, enabling a more
practical and efficient methodology for industrial activities
and processes involving data analysis.

III. THEORETICAL CONCEPTS

This section presents the concepts recommended for the
implementation and performance evaluation of this work.

A. General Linear Regression

In estimation studies, the most commonly used technique
is linear regression (LR) [31]. It considers same-class sam-
ples that can be represented by a linear equation due to
belonging to the same subspace. The formulation of the linear
regression model is given in Equation 1.

y=Po+ bz te 1

In linear equation, y and z are respectively the dependent
variable and the independent variable. The constant 3 is the
intersection point between the y-axis and the general equa-
tion and (3; is the regression coefficient, while e represents
the dependent variable error.

B. Decision Tree learning

Decision Tree Learning are commonly used algorithms for
solving categorical and continuous variable problems. Due
to it’s simple structure, decision tree learning is capable of
processing large amounts of data in small periods, while is
not as capable in dealing with complex classification prob-
lems [32]. A decision tree scheme begins with a root node,
where the first condition is applied. consecutive conditions
and constraints are hierarchically arranged from root node
to leaf nodes, representing the regression tree. The data
currently in each node is split according to it’s attendance of
the decision node conditions and constraints and follows to
the next node. Each decision node rule is defined based on
the information gain described in Equation 2. Decision trees
have a predefined goal variable, reached by the achievement
of leaf nodes that represent a split of tree data.

Gain(A,S) =Y —p(a)E(a) = >_ p(a)E(a)

reX aeT

(@)

1) Decision Tree Regressor: In regression problems,
where target variable is continuous, decision trees present
relative better results than other popular regression algo-
rithms such as linear or polynomial regressions, which are
no capable of performing as well while fitting such dis-
crete datasets. Decision tree regressor also outperforms other
machine learning models in some particular scenarios, such
as when data gaps are present in the data set, categorical
and numerical features are mixed, non-linearity and non-
continuity is present, or large differences in similar features
are present. For regression, leaf nodes are responsible for
predicting newly received values based on pre-existing data
and, if unseen, are predicted by mean region value [33].

C. Ensemble learning

Ensemble learning is a supervised machine learning
method, requiring a training set to teach models to yield
desired outputs and a testing set to validate the outputs. The
ensemble learning concept consists of the use of multiple
learning models to improve predicted results, and consec-
utively incorporating them into a single one in a voting
scheme. Ensemble learning presents and high-precision re-
sults for machine learning algorithms, and has consecutively
shown better results than many other predictive models [34].

1) Random Forest Regressor: Random Forest Regressor
(RFR) is a ensemble learning method rooted on operating
multiple decision trees to perform the regression function,
and is very common both in classification and regression
problems, specially due to presenting good results with small
amounts of training data. It’s bagged-training process con-
sists in creating multiple decision trees fed with bootstrapped
datasets, responsible for learning the mapping to different
features to the target, having each decision node criteria
considering a random subset of attributes. The RFR then
predicts values by an average of each decision tree prediction.
Part of it’s effectiveness can be associated with the utilization
of the random subspace method, providing better estimates
and generalizations [35].

2) XGBoost Regressor: eXtreme Gradient Boosting is a
scalable machine learning system for tree boosting. XGB is a
tree integration model, which uses the cumulative sum of the
predicted values of a sample in each tree as the prediction
of the sample in the XGB system. This model reduces the
risk of overfitting by adding regular terms and directly uses
the first derivative and the second derivative value of the
loss function [36] [37]. It differs from RF in the way it
grows, orders, and combines the results. XGB uses different
algorithms for splits finding.

3) Cubist: Cubist is a regression tree that embed linear
regression models instead of simple estimates of the output.
This algorithm constructs a regression tree, where interme-
diate linear models provide the prediction at each step [38].
The algorithm divides the data into subset of same size and
develops multilinear regression rules by selecting the optimal
predictor variables among all of the spectral variables to
be used in the regression. These rules are connected and
each rule takes a form condition sequence: “If [condition is
true] then [regress rule], and else [apply the next rule]”. If a
condition is true, then calculate the next prediction value. If
not, the sequence of if, then, and else is repeated.

D. Performance evaluation metrics

To evaluate the results obtained by each model, two
widely used performance metrics were chosen for this study:
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE).

1) MAE: MAE expresses the mean deviation of all predic-
tions given by the machine learning models. Mean Absolute
Error is formulated as in Equation 3.

N
1
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2) RMSE: Representing the standard deviation of estima-
tion errors, RMSE is useful in regression models to calculate
the error rate and the similarity between target size and error
size. This metric is formulated as in Equation 4.

RMSE = (€]

E. Hyperparameterization of Machine Learning Models

Also known as hyperparameter tuning or ’hyperparameter
optimization”, hyperparameterization of a machine learning
model is a technique that allows models to achieve the
best possible results for prediction or classification. Methods
such as Grid Search, used for this purpose, test all possible
combinations of hyperparameters. On the other hand, Ran-
dom Search, also used for hyperparameterization, randomly
tests a set of hyperparameters [16]. Hyperparameterization
is generally less efficient on extensive datasets due to the
difficulty in correctly determining the optimal parameters for
many samples in learning techniques. Therefore, sometimes
the mentioned methods are insufficiently accurate and require
a high computational load during tests of different ranges
of possibilities. On the other hand, Bayesian optimization
methods have been more accurate in hyperparameterization
processes by allowing the use of prior information to guide
the behavior of the objective function. In this context, recent
research shows that the Optuna framework, a Bayesian
optimizer, has better performance than the other methods
mentioned above [18].

1) Optuna Framework: Optuna is a easy-to-setup
Bayesian hyperparameter tuning framework focused on cost-
effectiveness. With a define-by-run API, the search space is
dynamically constructed by the trial object methods during
the objective function run-time, lessening the efforts of pre-
definitions about the optimization strategy. Fitted for both:
light-weight and heavy-weight experiments, optuna provides
it’s cost-effectiveness through optimized searching and per-
formance estimation strategies.

The framework’s sampling method encircles independent
sampling, best suited for algorithms such as Tree-Structured
Parzen Estimator, and relational sampling, taking into consid-
eration parameters correlations. Furthermore, optuna boasts
an unpromising trials termination mechanism, monitoring the
intermediate objective values and terminating trials (process
also known as evaluation of objective functions) without
promising results according to predefined conditions [39].

From the operational perspective, the tuning process be-
gins with the predefinitions, including direction of optimiza-
tion, parameters types, value ranges and maximum number of
iterations. Following the predefinitions, the study begins with
individual populations selection and pruning, consecutively
being employed in the objective function determination.
This process is executed repeatedly as preset in the study
definitions, culminating in outputting the best encountered
parameter values [40].

IV. PROPOSED METHODOLOGY

The dataset used contains approximately 35040 data ob-
servations in 15-minute intervals from a South Korean steel
industry. Since we aimed to improve performance metrics

for ensemble models and decision tree learning presented
in the state of the art for energy prediction in 15-minute
and 1-hour data, it was necessary to process the continuous
and categorical data from the original dataset to implement
energy consumption prediction models for 1 hour. Therefore,
the 15-minute data related to active and reactive energy
consumption, COy concentration, and the number of seconds
from midnight were summed during the 1-hour intervals
according to the timestamp in the dataset. The categorical
variables were kept for each hour recorded in the dataset.
Then, we divided the datasets of 15-minute and 1-hour
intervals into 75% for training and 25% for testing the
ensemble models and decision tree learning. Table IV shows
the number of observations used for each dataset for training
and validation. Except for the timestamp (date), all other
variables were used for training and testing the models.

TABLE IV
TRAINING AND TESTING DATASETS

1 hour data observations
Training ‘ Testing
6572 | 2188

15-minute data observations
Training ‘ Testing
26281 | 8759

Figure 1 illustrates the proposed hyperparameterization
methodology.

D=

Dataset

Obtain perf.
metrics

Metric

Set new hyperp.
Select best range of

hyperparameters Save best Metrics and

Hyperparameters

Set of best hyperparameters

-

Fig. 1. Proposed methodology for hyperparametrization.

After the separation of the data sets and observations,
we proceeded to develop the linear regression and hyperpa-
rameterization of the machine learning models using Python
language in Jupyter Lab Notebook. The Optuna framework
provides an API for hyperparameterization of machine and
deep learning models through a study function. In this
function, the user can suggest search ranges for the desired
hyperparameters using methods provided by the framework,
depending on the format of the suggested data (int, float,
categorical, etc.). Once the suggested hyperparameter ranges
are determined, the user instantiates the desired model for
classification or regression task according to the available
training data and with their preferred library, such as Scikit-
learn, TensorFlow, Keras, PyTorch, where they will pass the
desired hyperparameter ranges for the available methods to
execute the model.
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TABLE V
INITIAL HYPERPARAMETERS FOR EACH MACHINE LEARNING MODEL IN OBSERVATIONS WITH TIME STEPS OF 15 MINUTES AND | HOUR.
Model Time step Initial Hyperparameters Set
Decision Tree 15 min max depth [2 - 50], min samples split [2 - 10], min samples leaf [2 - 20]
Regressor (DTR) 1T hour max depth [2 - 50], min samples split [2 - 10], min samples leaf [2 - 20]
Random Forest 15 min max depth [2 - 50], estimatores [2 - 200], min samples split [2, 10]
Regressor (RFR) 1 hour max depth [2 - 50], estimatores [2 - 200], min samples split [2, 10]
XGBoost 15 min max depth [I - 10], learning ratio [0.001 - 1.0], min child weight [1 - 10]
Regressor (XGBR) 1T hour max depth [T - 10], Tearning ratio [0.001 - 1.0], min child weight [T - 40]
Cubist Regressor 15 min rules [200 - 1000], committees [2 - 60], neighbors [1 - 9]
i - 1 hour rules [200 - 1000], committees [2 - 60], neighbors [1 - 9]
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Fig. 2. Evolution of the best RMSE results for each model

In each iteration of the study function, also called “trial,”
Optuna performs the process of choosing hyperparameters
based on Bayesian optimization methods in search of the
best test performance metrics for the desired model. The
hyperparameter logs used in the trial and the results obtained
are made available, as well as the best result up to the
present trial. When Optuna finishes the “nTrials” for the
desired model, the best hyperparameters and performance
metrics are reported. Some of the initial hyperparameters
used to optimize the learning models through the proposed
methodology are shown in Table V.

It is important to mention that the model training evalua-
tion criterion was the Mean Squared Error. The libraries used
for data extraction and processing were Numpy and Pandas.
For the development of the machine learning models in
the proposed methodology, we used Scikit-learn, XGBoost,
and the Cubist library for the Python language. For plotting
graphical results, we used the Matplotlib library in Python,
and for the hyperparameters tuning we used Optuna library.

V. RESULTS

Initially, we evaluated the linear regression performance
with the RMSE and MAE metrics for test sets defined for
15-minute and 1-hour observations. These results are exposed
in Table VI. Since the pre-processing used in this work
was based on [2], [20]-[22], so that we could evaluate
the results obtained by the proposed methodology under
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in observations with time steps of 15 minutes and 1 hour.

the same conditions, the performance metrics for linear
regression were close those achieved in the state of the art
and represent the baseline for this work.

TABLE VI
PERFORMANCE METRICS OBTAINED FOR LINEAR REGRESSION

1 hour Time Step
RMSE (kWh) | MAE (kWh)
9.67 [ 6.54

15-min. Time Step
RMSE (kWh) | MAE (kWh)
4.36 [ 2.50

Proceeding to the first results, we performed 3 studies for
each model through the Optuna framework in the proposed
solution. Each study was performed with 1500 trials and,
after the end of each one, the best hyperparameters were
grouped to be used as the initial interval for the next study.
Figure 2 illustrates the evolution of the best RMSE results
over the trials of each study. It is possible to observe that
many models did not need 1500 trials to reach the smallest
error. Still, Optuna can look for better results by selecting
and reducing the range of hyperparameters on a per-study
basis. In this way, as illustrated in Figure 2, it was possible
to improve the performance of the learning models with
each study carried out. In Table VII, we present the best
results for the test set of each model and some of the
best hyperparameters obtained for observations with time
steps of 15 minutes and 1 hour. We emphasize that the
performance results obtained from each model surpassed
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TABLE VII
BEST HYPERPARAMETERS AND BEST RMSE RESULTS FOR EACH MODEL IN OBSERVATIONS WITH TIME STEPS OF 15 MINUTES AND 1 HOUR.

. Best Testing Results
Model Time step Best Hyperparameters RMSE (kW) | MAE (kW)
Decision Tree 15 min max depth = 20, min samples split = 4, min samples leaf = 1 1.264 0.513
Regressor (DTR) 1 hour max depth = 15, min samples split = 6, min samples leaf = 2 7.933 4.019
Random Forest 15 min max depth = 20, estimatores = 94, min samples split = 2 0.942 0.335
Regressor (RFR) 1 hour max depth = 22, estimators = 250, min samples split = 2 7.245 3.221
XGBoost 15 min max depth = 3, learning ratio = 0.78815, min child weight = 3 0.301 0.141
Regressor (XGBR) 1 hour max depth = 2, learning ratio = 0.17315, min child weight = 1 1.907 0.943
Cubist Regressor 15 min rules = 227, committees = 87, neighbors = 7 0.175 0.039
gress 1 hour rules = 517, committees = 50, neighbors = 5 1.341 0.334
TABLE VIII VI. CONCLUSION
DEMANDED TIME FOR HYPERPARAMETER OPTIMIZATION
Modal Time Study | T8 Study | Mean Trial We develop an approach for hyperparameterization of
Step Time Time machine learning models based on Bayesian optimization.
1 3.4 min 0.13 s . N
. 15 min 5 37 mm 012 The Optuna framework, until then showing good results and
DecisionTree 3 3o 013 . .
Regressor 3 -2 min 13 s performance in the literature, was part of the scope of the
1 8 min 0.32s . .
(DTR) 1 hour > RETTY 0.08S strategy presented in this work. The proposal was evaluated
3 2.1 min 0.08 s using energy consumption data from a steel industry with
1 188.5 min 7.54's . .
15 min 5 330 min 93T s observations of 15 minutes and 1 hour. Through the proposed
Random Forest - N
Regressor 3 278.9 min 1115 s strategy, we surpassed the performance metrics of all works
(RFR) 1 743 min 297 s .. . .
1 hour 5 777 6875 that used statistical models, machine learning and deep learn-
3 151 min 6.04 5 ing, including ensemble models and decision tree learning,
1 169 min 6.76 5 . . .
; - 3 for the same database in observations of 15 minutes and 1
XGBoost 15 min 2 743.3 min 29.73's
Reoressor 3 4103.1 min 164.12 5 hour. It was shown that the employed Bayesian optimization
(ngéiz) T 1552.8 min 62.11s s perf ab he her search models used i
1 hour 5 5079 min 83T process performed better than other search models used in
3 1132.9 min 4531 s the state of the art, such as Grid and Random Search. The
1 3089 min 123.56 s .
15 min > 3T min 32405 ensemble learning models used, Random Forest Regressor,
Cubist 3 3803 min 152125 XGboost Regressor and Cubist Regressor, outperformed the
Regressor 1 509.6 min 20.38 s £ tri f the Decisi f del for thi
| hour > 319 min 397 s performance metrics of the Decision tree model for this pre-
3 4532 min 1813’5 diction task. The Cubist model still remains the best predictor

the performance metrics presented in the literature for the
same models without using specific feature selection or pre-
processing techniques, as other works have used to obtain
better results. Thus, there is scope for obtaining better results
for this data set using the proposed methodology for hyperpa-
rameterization, together with other pre-processing techniques
and selection of input features. We present, for the first time,
the XGBoost Regressor, hitherto not found for regression
tasks with the aforementioned database, which proved to
be superior to the Gradient Boosting Regressor applied in
other works as an alternative for predicting energy con-
sumption. XGboost Regressor also outperformed Random
Forest Regressor and Decision Tree Regressor. However,
the Cubist Regressor model remained the best model for
predicting energy consumption for the database used, as
also shown in other studies in the literature. So far, the
best results for RMSE and MAE performance metrics for
the Cubist model were obtained in this work, both for 15-
minute and 1-hour observations. Additionally, we present in
Table VIII the total time of each study carried out and the
average time of each trial in the referred studies. Overall,
the Random Forest Regressor and Decision Tree Regressor
models were optimized in a shorter time compared to the
XGBoost Regressor models and the Cubist model.

for predicting energy consumption for the context of the
database used. The XGBoost model was used for a regression
task in an unprecedented way in this context, surpassing its
predecessor, Gradient Boosting Regressor, previously used
for this function in other works in the literature. However, the
Decision Tree model can be optimized in less time through
the proposed methodology, and may prove to be ideal for
industrial applications that require efficiency and speed in
hyperparameterization processes. Other case studies can be
used with the proposed methodology for optimizing su-
pervised learning models, involving management processes,
time series analysis and other classification and prediction
tasks. As a future work, it is suggested the use of the method
presented in this work, together with techniques of selection
of characteristics and pre-processing of data that corroborate
for better results for studies of forecast of consumption or
other cases, systems or processes.
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